Skip to content

[proto] Added few transforms tests, part 1 #6262

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
265 changes: 264 additions & 1 deletion test/test_prototype_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,13 @@
from test_prototype_transforms_functional import (
make_images,
make_bounding_boxes,
make_bounding_box,
make_one_hot_labels,
make_label,
make_segmentation_mask,
)
from torchvision.prototype import transforms, features
from torchvision.transforms.functional import to_pil_image, pil_to_tensor
from torchvision.transforms.functional import to_pil_image, pil_to_tensor, InterpolationMode


def make_vanilla_tensor_images(*args, **kwargs):
Expand Down Expand Up @@ -106,6 +109,20 @@ def test_common(self, transform, input):
def test_mixup_cutmix(self, transform, input):
transform(input)

# add other data that should bypass and wont raise any error
input_copy = dict(input)
input_copy["path"] = "/path/to/somewhere"
input_copy["num"] = 1234
transform(input_copy)

# Check if we raise an error if sample contains bbox or mask or label
err_msg = "does not support bounding boxes, segmentation masks and plain labels"
input_copy = dict(input)
for unsup_data in [make_label(), make_bounding_box(format="XYXY"), make_segmentation_mask()]:
input_copy["unsupported"] = unsup_data
with pytest.raises(TypeError, match=err_msg):
transform(input_copy)

@parametrize(
[
(
Expand Down Expand Up @@ -303,3 +320,249 @@ def test_features_bounding_box(self, p):
assert_equal(expected, actual)
assert actual.format == expected.format
assert actual.image_size == expected.image_size


class TestPad:
def test_assertions(self):
with pytest.raises(TypeError, match="Got inappropriate padding arg"):
transforms.Pad("abc")

with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
transforms.Pad([-0.7, 0, 0.7])

with pytest.raises(TypeError, match="Got inappropriate fill arg"):
transforms.Pad(12, fill="abc")

with pytest.raises(ValueError, match="Padding mode should be either"):
transforms.Pad(12, padding_mode="abc")

@pytest.mark.parametrize("padding", [1, (1, 2), [1, 2, 3, 4]])
@pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
@pytest.mark.parametrize("padding_mode", ["constant", "edge"])
def test__transform(self, padding, fill, padding_mode, mocker):
transform = transforms.Pad(padding, fill=fill, padding_mode=padding_mode)

fn = mocker.patch("torchvision.prototype.transforms.functional.pad")
inpt = mocker.MagicMock(spec=torch.Tensor)
_ = transform(inpt)

fn.assert_called_once_with(inpt, padding=padding, fill=fill, padding_mode=padding_mode)


class TestRandomZoomOut:
def test_assertions(self):
with pytest.raises(TypeError, match="Got inappropriate fill arg"):
transforms.RandomZoomOut(fill="abc")

with pytest.raises(TypeError, match="should be a sequence of length"):
transforms.RandomZoomOut(0, side_range=0)

with pytest.raises(ValueError, match="Invalid canvas side range"):
transforms.RandomZoomOut(0, side_range=[4.0, 1.0])

@pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
@pytest.mark.parametrize("side_range", [(1.0, 4.0), [2.0, 5.0]])
def test__get_params(self, fill, side_range):
transform = transforms.RandomZoomOut(fill=fill, side_range=side_range)

image = features.Image(torch.rand(1, 3, 32, 32))
c, h, w = image.shape[-3:]

params = transform._get_params(image)

assert params["fill"] == (fill if not isinstance(fill, int) else [fill] * c)
assert len(params["padding"]) == 4
assert 0 <= params["padding"][0] <= (side_range[1] - 1) * w
assert 0 <= params["padding"][1] <= (side_range[1] - 1) * h
assert 0 <= params["padding"][2] <= (side_range[1] - 1) * w
assert 0 <= params["padding"][3] <= (side_range[1] - 1) * h

@pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
@pytest.mark.parametrize("side_range", [(1.0, 4.0), [2.0, 5.0]])
def test__transform(self, fill, side_range, mocker):
image = features.Image(torch.rand(1, 3, 32, 32))
transform = transforms.RandomZoomOut(fill=fill, side_range=side_range, p=1)

fn = mocker.patch("torchvision.prototype.transforms.functional.pad")
# vfdev-5, Feature Request: let's store params as Transform attribute
# This could be also helpful for users
torch.manual_seed(12)
_ = transform(image)
torch.manual_seed(12)
torch.rand(1) # random apply changes random state
params = transform._get_params(image)

fn.assert_called_once_with(image, **params)


class TestRandomRotation:
def test_assertions(self):
with pytest.raises(ValueError, match="is a single number, it must be positive"):
transforms.RandomRotation(-0.7)

for d in [[-0.7], [-0.7, 0, 0.7]]:
with pytest.raises(ValueError, match="degrees should be a sequence of length 2"):
transforms.RandomRotation(d)

with pytest.raises(TypeError, match="Got inappropriate fill arg"):
transforms.RandomRotation(12, fill="abc")

with pytest.raises(TypeError, match="center should be a sequence of length"):
transforms.RandomRotation(12, center=12)

with pytest.raises(ValueError, match="center should be a sequence of length"):
transforms.RandomRotation(12, center=[1, 2, 3])

def test__get_params(self):
angle_bound = 34
transform = transforms.RandomRotation(angle_bound)

params = transform._get_params(None)
assert -angle_bound <= params["angle"] <= angle_bound

angle_bounds = [12, 34]
transform = transforms.RandomRotation(angle_bounds)

params = transform._get_params(None)
assert angle_bounds[0] <= params["angle"] <= angle_bounds[1]

@pytest.mark.parametrize("degrees", [23, [0, 45], (0, 45)])
@pytest.mark.parametrize("expand", [False, True])
@pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
@pytest.mark.parametrize("center", [None, [2.0, 3.0]])
def test__transform(self, degrees, expand, fill, center, mocker):
interpolation = InterpolationMode.BILINEAR
transform = transforms.RandomRotation(
degrees, interpolation=interpolation, expand=expand, fill=fill, center=center
)

if isinstance(degrees, (tuple, list)):
assert transform.degrees == [float(degrees[0]), float(degrees[1])]
else:
assert transform.degrees == [float(-degrees), float(degrees)]

fn = mocker.patch("torchvision.prototype.transforms.functional.rotate")
inpt = mocker.MagicMock(spec=torch.Tensor)
# vfdev-5, Feature Request: let's store params as Transform attribute
# This could be also helpful for users
torch.manual_seed(12)
_ = transform(inpt)
torch.manual_seed(12)
params = transform._get_params(inpt)

fn.assert_called_once_with(inpt, **params, interpolation=interpolation, expand=expand, fill=fill, center=center)


class TestRandomAffine:
def test_assertions(self):
with pytest.raises(ValueError, match="is a single number, it must be positive"):
transforms.RandomAffine(-0.7)

for d in [[-0.7], [-0.7, 0, 0.7]]:
with pytest.raises(ValueError, match="degrees should be a sequence of length 2"):
transforms.RandomAffine(d)

with pytest.raises(TypeError, match="Got inappropriate fill arg"):
transforms.RandomAffine(12, fill="abc")

with pytest.raises(TypeError, match="Got inappropriate fill arg"):
transforms.RandomAffine(12, fill="abc")

for kwargs in [
{"center": 12},
{"translate": 12},
{"scale": 12},
]:
with pytest.raises(TypeError, match="should be a sequence of length"):
transforms.RandomAffine(12, **kwargs)

for kwargs in [{"center": [1, 2, 3]}, {"translate": [1, 2, 3]}, {"scale": [1, 2, 3]}]:
with pytest.raises(ValueError, match="should be a sequence of length"):
transforms.RandomAffine(12, **kwargs)

with pytest.raises(ValueError, match="translation values should be between 0 and 1"):
transforms.RandomAffine(12, translate=[-1.0, 2.0])

with pytest.raises(ValueError, match="scale values should be positive"):
transforms.RandomAffine(12, scale=[-1.0, 2.0])

with pytest.raises(ValueError, match="is a single number, it must be positive"):
transforms.RandomAffine(12, shear=-10)

for s in [[-0.7], [-0.7, 0, 0.7]]:
with pytest.raises(ValueError, match="shear should be a sequence of length 2"):
transforms.RandomAffine(12, shear=s)

@pytest.mark.parametrize("degrees", [23, [0, 45], (0, 45)])
@pytest.mark.parametrize("translate", [None, [0.1, 0.2]])
@pytest.mark.parametrize("scale", [None, [0.7, 1.2]])
@pytest.mark.parametrize("shear", [None, 2.0, [5.0, 15.0], [1.0, 2.0, 3.0, 4.0]])
def test__get_params(self, degrees, translate, scale, shear):
image = features.Image(torch.rand(1, 3, 32, 32))
h, w = image.shape[-2:]

transform = transforms.RandomAffine(degrees, translate=translate, scale=scale, shear=shear)
params = transform._get_params(image)

if not isinstance(degrees, (list, tuple)):
assert -degrees <= params["angle"] <= degrees
else:
assert degrees[0] <= params["angle"] <= degrees[1]

if translate is not None:
assert -translate[0] * w <= params["translations"][0] <= translate[0] * w
assert -translate[1] * h <= params["translations"][1] <= translate[1] * h
else:
assert params["translations"] == (0, 0)

if scale is not None:
assert scale[0] <= params["scale"] <= scale[1]
else:
assert params["scale"] == 1.0

if shear is not None:
if isinstance(shear, float):
assert -shear <= params["shear"][0] <= shear
assert params["shear"][1] == 0.0
elif len(shear) == 2:
assert shear[0] <= params["shear"][0] <= shear[1]
assert params["shear"][1] == 0.0
else:
assert shear[0] <= params["shear"][0] <= shear[1]
assert shear[2] <= params["shear"][1] <= shear[3]
else:
assert params["shear"] == (0, 0)

@pytest.mark.parametrize("degrees", [23, [0, 45], (0, 45)])
@pytest.mark.parametrize("translate", [None, [0.1, 0.2]])
@pytest.mark.parametrize("scale", [None, [0.7, 1.2]])
@pytest.mark.parametrize("shear", [None, 2.0, [5.0, 15.0], [1.0, 2.0, 3.0, 4.0]])
@pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
@pytest.mark.parametrize("center", [None, [2.0, 3.0]])
def test__transform(self, degrees, translate, scale, shear, fill, center, mocker):
interpolation = InterpolationMode.BILINEAR
transform = transforms.RandomAffine(
degrees,
translate=translate,
scale=scale,
shear=shear,
interpolation=interpolation,
fill=fill,
center=center,
)

if isinstance(degrees, (tuple, list)):
assert transform.degrees == [float(degrees[0]), float(degrees[1])]
else:
assert transform.degrees == [float(-degrees), float(degrees)]

fn = mocker.patch("torchvision.prototype.transforms.functional.affine")
inpt = features.Image(torch.rand(1, 3, 32, 32))
# vfdev-5, Feature Request: let's store params as Transform attribute
# This could be also helpful for users
torch.manual_seed(12)
_ = transform(inpt)
torch.manual_seed(12)
params = transform._get_params(inpt)

fn.assert_called_once_with(inpt, **params, interpolation=interpolation, fill=fill, center=center)
14 changes: 8 additions & 6 deletions torchvision/prototype/transforms/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -236,16 +236,16 @@ def __init__(
if not isinstance(padding, (numbers.Number, tuple, list)):
raise TypeError("Got inappropriate padding arg")

if isinstance(padding, (tuple, list)) and len(padding) not in [1, 2, 4]:
raise ValueError(
f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
)

_check_fill_arg(fill)

if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
raise ValueError(
f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
)

self.padding = padding
self.fill = fill
self.padding_mode = padding_mode
Expand All @@ -258,14 +258,16 @@ class RandomZoomOut(_RandomApplyTransform):
def __init__(
self,
fill: Union[int, float, Sequence[int], Sequence[float]] = 0,
side_range: Tuple[float, float] = (1.0, 4.0),
side_range: Sequence[float] = (1.0, 4.0),
p: float = 0.5,
) -> None:
super().__init__(p=p)

_check_fill_arg(fill)
self.fill = fill

_check_sequence_input(side_range, "side_range", req_sizes=(2,))

self.side_range = side_range
if side_range[0] < 1.0 or side_range[0] > side_range[1]:
raise ValueError(f"Invalid canvas side range provided {side_range}.")
Expand Down
2 changes: 1 addition & 1 deletion torchvision/transforms/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -1855,7 +1855,7 @@ def _check_sequence_input(x, name, req_sizes):
if not isinstance(x, Sequence):
raise TypeError(f"{name} should be a sequence of length {msg}.")
if len(x) not in req_sizes:
raise ValueError(f"{name} should be sequence of length {msg}.")
raise ValueError(f"{name} should be a sequence of length {msg}.")


def _setup_angle(x, name, req_sizes=(2,)):
Expand Down