Skip to content

[proto] Added random color transforms and tests #6275

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions test/test_prototype_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,12 @@ class TestSmoke:
transforms.RandomRotation(degrees=(-45, 45)),
transforms.RandomAffine(degrees=(-45, 45)),
transforms.RandomCrop([16, 16], padding=1, pad_if_needed=True),
# TODO: Something wrong with input data setup. Let's fix that
# transforms.RandomEqualize(),
# transforms.RandomInvert(),
# transforms.RandomPosterize(bits=4),
# transforms.RandomSolarize(threshold=0.5),
# transforms.RandomAdjustSharpness(sharpness_factor=0.5),
)
def test_common(self, transform, input):
transform(input)
Expand Down Expand Up @@ -699,3 +705,28 @@ def test__transform(self, kernel_size, sigma, mocker):
params = transform._get_params(inpt)

fn.assert_called_once_with(inpt, **params)


class TestRandomColorOp:
@pytest.mark.parametrize("p", [0.0, 1.0])
@pytest.mark.parametrize(
"transform_cls, func_op_name, kwargs",
[
(transforms.RandomEqualize, "equalize", {}),
(transforms.RandomInvert, "invert", {}),
(transforms.RandomAutocontrast, "autocontrast", {}),
(transforms.RandomPosterize, "posterize", {"bits": 4}),
(transforms.RandomSolarize, "solarize", {"threshold": 0.5}),
(transforms.RandomAdjustSharpness, "adjust_sharpness", {"sharpness_factor": 0.5}),
],
)
def test__transform(self, p, transform_cls, func_op_name, kwargs, mocker):
transform = transform_cls(p=p, **kwargs)

fn = mocker.patch(f"torchvision.prototype.transforms.functional.{func_op_name}")
inpt = mocker.MagicMock(spec=features.Image)
_ = transform(inpt)
if p > 0.0:
fn.assert_called_once_with(inpt, **kwargs)
else:
fn.call_count == 0
51 changes: 51 additions & 0 deletions test/test_prototype_transforms_functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -515,6 +515,57 @@ def gaussian_blur_image_tensor():
yield SampleInput(image, kernel_size=kernel_size, sigma=sigma)


@register_kernel_info_from_sample_inputs_fn
def equalize_image_tensor():
for image in make_images(extra_dims=(), color_spaces=(features.ColorSpace.GRAY, features.ColorSpace.RGB)):
if image.dtype != torch.uint8:
continue
yield SampleInput(image)


@register_kernel_info_from_sample_inputs_fn
def invert_image_tensor():
for image in make_images(color_spaces=(features.ColorSpace.GRAY, features.ColorSpace.RGB)):
yield SampleInput(image)


@register_kernel_info_from_sample_inputs_fn
def posterize_image_tensor():
for image, bits in itertools.product(
make_images(color_spaces=(features.ColorSpace.GRAY, features.ColorSpace.RGB)),
[1, 4, 8],
):
if image.dtype != torch.uint8:
continue
yield SampleInput(image, bits=bits)


@register_kernel_info_from_sample_inputs_fn
def solarize_image_tensor():
for image, threshold in itertools.product(
make_images(color_spaces=(features.ColorSpace.GRAY, features.ColorSpace.RGB)),
[0.1, 0.5, 127.0],
):
if image.is_floating_point() and threshold > 1.0:
continue
yield SampleInput(image, threshold=threshold)


@register_kernel_info_from_sample_inputs_fn
def autocontrast_image_tensor():
for image in make_images(color_spaces=(features.ColorSpace.GRAY, features.ColorSpace.RGB)):
yield SampleInput(image)


@register_kernel_info_from_sample_inputs_fn
def adjust_sharpness_image_tensor():
for image, sharpness_factor in itertools.product(
make_images(extra_dims=((4,),), color_spaces=(features.ColorSpace.GRAY, features.ColorSpace.RGB)),
[0.1, 0.5],
):
yield SampleInput(image, sharpness_factor=sharpness_factor)


@pytest.mark.parametrize(
"kernel",
[
Expand Down
14 changes: 11 additions & 3 deletions torchvision/prototype/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,16 @@

from ._augment import RandomErasing, RandomMixup, RandomCutmix
from ._auto_augment import RandAugment, TrivialAugmentWide, AutoAugment, AugMix
from ._color import ColorJitter, RandomPhotometricDistort, RandomEqualize
from ._color import (
ColorJitter,
RandomPhotometricDistort,
RandomEqualize,
RandomInvert,
RandomPosterize,
RandomSolarize,
RandomAutocontrast,
RandomAdjustSharpness,
)
from ._container import Compose, RandomApply, RandomChoice, RandomOrder
from ._geometry import (
Resize,
Expand All @@ -27,5 +36,4 @@

from ._deprecated import Grayscale, RandomGrayscale, ToTensor, ToPILImage, PILToTensor # usort: skip

# TODO: add RandomPerspective, RandomInvert, RandomPosterize, RandomSolarize,
# RandomAdjustSharpness, RandomAutocontrast, ElasticTransform
# TODO: add RandomPerspective, ElasticTransform
38 changes: 36 additions & 2 deletions torchvision/prototype/transforms/_color.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,8 +151,42 @@ def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:


class RandomEqualize(_RandomApplyTransform):
def __init__(self, p: float = 0.5):
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return F.equalize(inpt)


class RandomInvert(_RandomApplyTransform):
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return F.invert(inpt)


class RandomPosterize(_RandomApplyTransform):
def __init__(self, bits: int, p: float = 0.5) -> None:
super().__init__(p=p)
self.bits = bits

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return F.equalize(inpt)
return F.posterize(inpt, bits=self.bits)


class RandomSolarize(_RandomApplyTransform):
def __init__(self, threshold: float, p: float = 0.5) -> None:
super().__init__(p=p)
self.threshold = threshold

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return F.solarize(inpt, threshold=self.threshold)


class RandomAutocontrast(_RandomApplyTransform):
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return F.autocontrast(inpt)


class RandomAdjustSharpness(_RandomApplyTransform):
def __init__(self, sharpness_factor: float, p: float = 0.5) -> None:
super().__init__(p=p)
self.sharpness_factor = sharpness_factor

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return F.adjust_sharpness(inpt, sharpness_factor=self.sharpness_factor)