Skip to content

Copy paste prototype.datapoints and prototype.transforms out of prototype area #7259

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions torchvision/datapoints/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
from ._bounding_box import BoundingBox, BoundingBoxFormat
from ._datapoint import FillType, FillTypeJIT, InputType, InputTypeJIT
from ._image import Image, ImageType, ImageTypeJIT, TensorImageType, TensorImageTypeJIT
from ._label import Label, OneHotLabel
from ._mask import Mask
from ._video import TensorVideoType, TensorVideoTypeJIT, Video, VideoType, VideoTypeJIT

from ._dataset_wrapper import wrap_dataset_for_transforms_v2 # type: ignore[attr-defined] # usort: skip
200 changes: 200 additions & 0 deletions torchvision/datapoints/_bounding_box.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
from __future__ import annotations

from typing import Any, List, Optional, Sequence, Tuple, Union

import torch
from torchvision._utils import StrEnum
from torchvision.transforms import InterpolationMode # TODO: this needs to be moved out of transforms

from ._datapoint import Datapoint, FillTypeJIT


class BoundingBoxFormat(StrEnum):
XYXY = StrEnum.auto()
XYWH = StrEnum.auto()
CXCYWH = StrEnum.auto()


class BoundingBox(Datapoint):
format: BoundingBoxFormat
spatial_size: Tuple[int, int]

@classmethod
def _wrap(cls, tensor: torch.Tensor, *, format: BoundingBoxFormat, spatial_size: Tuple[int, int]) -> BoundingBox:
bounding_box = tensor.as_subclass(cls)
bounding_box.format = format
bounding_box.spatial_size = spatial_size
return bounding_box

def __new__(
cls,
data: Any,
*,
format: Union[BoundingBoxFormat, str],
spatial_size: Tuple[int, int],
dtype: Optional[torch.dtype] = None,
device: Optional[Union[torch.device, str, int]] = None,
requires_grad: Optional[bool] = None,
) -> BoundingBox:
tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad)

if isinstance(format, str):
format = BoundingBoxFormat.from_str(format.upper())

return cls._wrap(tensor, format=format, spatial_size=spatial_size)

@classmethod
def wrap_like(
cls,
other: BoundingBox,
tensor: torch.Tensor,
*,
format: Optional[BoundingBoxFormat] = None,
spatial_size: Optional[Tuple[int, int]] = None,
) -> BoundingBox:
return cls._wrap(
tensor,
format=format if format is not None else other.format,
spatial_size=spatial_size if spatial_size is not None else other.spatial_size,
)

def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override]
return self._make_repr(format=self.format, spatial_size=self.spatial_size)

def horizontal_flip(self) -> BoundingBox:
output = self._F.horizontal_flip_bounding_box(
self.as_subclass(torch.Tensor), format=self.format, spatial_size=self.spatial_size
)
return BoundingBox.wrap_like(self, output)

def vertical_flip(self) -> BoundingBox:
output = self._F.vertical_flip_bounding_box(
self.as_subclass(torch.Tensor), format=self.format, spatial_size=self.spatial_size
)
return BoundingBox.wrap_like(self, output)

def resize( # type: ignore[override]
self,
size: List[int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
max_size: Optional[int] = None,
antialias: Optional[Union[str, bool]] = "warn",
) -> BoundingBox:
output, spatial_size = self._F.resize_bounding_box(
self.as_subclass(torch.Tensor),
spatial_size=self.spatial_size,
size=size,
max_size=max_size,
)
return BoundingBox.wrap_like(self, output, spatial_size=spatial_size)

def crop(self, top: int, left: int, height: int, width: int) -> BoundingBox:
output, spatial_size = self._F.crop_bounding_box(
self.as_subclass(torch.Tensor), self.format, top=top, left=left, height=height, width=width
)
return BoundingBox.wrap_like(self, output, spatial_size=spatial_size)

def center_crop(self, output_size: List[int]) -> BoundingBox:
output, spatial_size = self._F.center_crop_bounding_box(
self.as_subclass(torch.Tensor), format=self.format, spatial_size=self.spatial_size, output_size=output_size
)
return BoundingBox.wrap_like(self, output, spatial_size=spatial_size)

def resized_crop(
self,
top: int,
left: int,
height: int,
width: int,
size: List[int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
antialias: Optional[Union[str, bool]] = "warn",
) -> BoundingBox:
output, spatial_size = self._F.resized_crop_bounding_box(
self.as_subclass(torch.Tensor), self.format, top, left, height, width, size=size
)
return BoundingBox.wrap_like(self, output, spatial_size=spatial_size)

def pad(
self,
padding: Union[int, Sequence[int]],
fill: Optional[Union[int, float, List[float]]] = None,
padding_mode: str = "constant",
) -> BoundingBox:
output, spatial_size = self._F.pad_bounding_box(
self.as_subclass(torch.Tensor),
format=self.format,
spatial_size=self.spatial_size,
padding=padding,
padding_mode=padding_mode,
)
return BoundingBox.wrap_like(self, output, spatial_size=spatial_size)

def rotate(
self,
angle: float,
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
expand: bool = False,
center: Optional[List[float]] = None,
fill: FillTypeJIT = None,
) -> BoundingBox:
output, spatial_size = self._F.rotate_bounding_box(
self.as_subclass(torch.Tensor),
format=self.format,
spatial_size=self.spatial_size,
angle=angle,
expand=expand,
center=center,
)
return BoundingBox.wrap_like(self, output, spatial_size=spatial_size)

def affine(
self,
angle: Union[int, float],
translate: List[float],
scale: float,
shear: List[float],
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
fill: FillTypeJIT = None,
center: Optional[List[float]] = None,
) -> BoundingBox:
output = self._F.affine_bounding_box(
self.as_subclass(torch.Tensor),
self.format,
self.spatial_size,
angle,
translate=translate,
scale=scale,
shear=shear,
center=center,
)
return BoundingBox.wrap_like(self, output)

def perspective(
self,
startpoints: Optional[List[List[int]]],
endpoints: Optional[List[List[int]]],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: FillTypeJIT = None,
coefficients: Optional[List[float]] = None,
) -> BoundingBox:
output = self._F.perspective_bounding_box(
self.as_subclass(torch.Tensor),
format=self.format,
spatial_size=self.spatial_size,
startpoints=startpoints,
endpoints=endpoints,
coefficients=coefficients,
)
return BoundingBox.wrap_like(self, output)

def elastic(
self,
displacement: torch.Tensor,
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: FillTypeJIT = None,
) -> BoundingBox:
output = self._F.elastic_bounding_box(
self.as_subclass(torch.Tensor), self.format, self.spatial_size, displacement=displacement
)
return BoundingBox.wrap_like(self, output)
Loading