-
Notifications
You must be signed in to change notification settings - Fork 13.3k
Tracking Issue for naked_functions_target_feature
#138568
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Labels
A-attributes
Area: Attributes (`#[…]`, `#![…]`)
A-naked
Area: `#[naked]`, prologue and epilogue-free, functions, https://git.io/vAzzS
A-target-feature
Area: Enabling/disabling target features like AVX, Neon, etc.
C-tracking-issue
Category: An issue tracking the progress of sth. like the implementation of an RFC
F-naked_functions_target_feature
`#![feature(naked_functions_target_feature)]`
F-naked_functions
`#![feature(naked_functions)]`
T-compiler
Relevant to the compiler team, which will review and decide on the PR/issue.
T-lang
Relevant to the language team, which will review and decide on the PR/issue.
Comments
@rustbot label +A-naked +F-naked_functions |
matthiaskrgr
added a commit
to matthiaskrgr/rust
that referenced
this issue
Mar 21, 2025
…eature-gate, r=Amanieu add `naked_functions_target_feature` unstable feature tracking issue: rust-lang#138568 tagging rust-lang#134213 rust-lang#90957 This PR puts `#[target_feature(/* ... */)]` on `#[naked]` functions behind its own feature gate, so that naked functions can be stabilized. It turns out that supporting `target_feature` on naked functions is tricky on some targets, so we're splitting it out to not block stabilization of naked functions themselves. See the tracking issue for more information and workarounds. Note that at the time of writing, the `target_features` attribute is ignored when generating code for naked functions. r? `@Amanieu`
matthiaskrgr
added a commit
to matthiaskrgr/rust
that referenced
this issue
Mar 21, 2025
…eature-gate, r=Amanieu add `naked_functions_target_feature` unstable feature tracking issue: rust-lang#138568 tagging rust-lang#134213 rust-lang#90957 This PR puts `#[target_feature(/* ... */)]` on `#[naked]` functions behind its own feature gate, so that naked functions can be stabilized. It turns out that supporting `target_feature` on naked functions is tricky on some targets, so we're splitting it out to not block stabilization of naked functions themselves. See the tracking issue for more information and workarounds. Note that at the time of writing, the `target_features` attribute is ignored when generating code for naked functions. r? ``@Amanieu``
rust-timer
added a commit
to rust-lang-ci/rust
that referenced
this issue
Mar 21, 2025
Rollup merge of rust-lang#138570 - folkertdev:naked-function-target-feature-gate, r=Amanieu add `naked_functions_target_feature` unstable feature tracking issue: rust-lang#138568 tagging rust-lang#134213 rust-lang#90957 This PR puts `#[target_feature(/* ... */)]` on `#[naked]` functions behind its own feature gate, so that naked functions can be stabilized. It turns out that supporting `target_feature` on naked functions is tricky on some targets, so we're splitting it out to not block stabilization of naked functions themselves. See the tracking issue for more information and workarounds. Note that at the time of writing, the `target_features` attribute is ignored when generating code for naked functions. r? ``@Amanieu``
jieyouxu
added a commit
to jieyouxu/rust
that referenced
this issue
Apr 21, 2025
…ns, r=tgross35,Amanieu,traviscross Stabilize `naked_functions` tracking issue: rust-lang#90957 request for stabilization on tracking issue: rust-lang#90957 (comment) reference PR: rust-lang/reference#1689 # Request for Stabilization Two years later, we're ready to try this again. Even though this issue is already marked as having passed FCP, given the amount of time that has passed and the changes in implementation strategy, we should follow the process again. ## Summary The `naked_functions` feature has two main parts: the `#[naked]` function attribute, and the `naked_asm!` macro. An example of a naked function: ```rust const THREE: usize = 3; #[naked] pub extern "sysv64" fn add_n(number: usize) -> usize { // SAFETY: the validity of the used registers // is guaranteed according to the "sysv64" ABI unsafe { core::arch::naked_asm!( "add rdi, {}", "mov rax, rdi", "ret", const THREE, ) } } ``` When the `#[naked]` attribute is applied to a function, the compiler won't emit a [function prologue](https://en.wikipedia.org/wiki/Function_prologue_and_epilogue) or epilogue when generating code for this function. This attribute is analogous to [`__attribute__((naked))`](https://developer.arm.com/documentation/100067/0608/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----naked---function-attribute) in C. The use of this feature allows the programmer to have precise control over the assembly that is generated for a given function. The body of a naked function must consist of a single `naked_asm!` invocation, a heavily restricted variant of the `asm!` macro: the only legal operands are `const` and `sym`, and the only legal options are `raw` and `att_syntax`. In lieu of specifying operands, the `naked_asm!` within a naked function relies on the function's calling convention to determine the validity of registers. ## Documentation The Rust Reference: rust-lang/reference#1689 (Previous PR: rust-lang/reference#1153) ## Tests * [tests/run-make/naked-symbol-visiblity](https://github.com/rust-lang/rust/tree/master/tests/codegen/naked-fn) verifies that `pub`, `#[no_mangle]` and `#[linkage = "..."]` work correctly for naked functions * [tests/codegen/naked-fn](https://github.com/rust-lang/rust/tree/master/tests/codegen/naked-fn) has tests for function alignment, use of generics, and validates the exact assembly output on linux, macos, windows and thumb * [tests/ui/asm/naked-*](https://github.com/rust-lang/rust/tree/master/tests/ui/asm) tests for incompatible attributes, generating errors around incorrect use of `naked_asm!`, etc ## Interaction with other (unstable) features ### [fn_align](rust-lang#82232) Combining `#[naked]` with `#[repr(align(N))]` works well, and is tested e.g. here - https://github.com/rust-lang/rust/blob/master/tests/codegen/naked-fn/aligned.rs - https://github.com/rust-lang/rust/blob/master/tests/codegen/naked-fn/min-function-alignment.rs It's tested extensively because we do need to explicitly support the `repr(align)` attribute (and make sure we e.g. don't mistake powers of two for number of bytes). ## History This feature was originally proposed in [RFC 1201](rust-lang/rfcs#1201), filed on 2015-07-10 and accepted on 2016-03-21. Support for this feature was added in [rust-lang#32410](rust-lang#32410), landing on 2016-03-23. Development languished for several years as it was realized that the semantics given in RFC 1201 were insufficiently specific. To address this, a minimal subset of naked functions was specified by [RFC 2972](rust-lang/rfcs#2972), filed on 2020-08-07 and accepted on 2021-11-16. Prior to the acceptance of RFC 2972, all of the stricter behavior specified by RFC 2972 was implemented as a series of warn-by-default lints that would trigger on existing uses of the `naked` attribute; these lints became hard errors in [rust-lang#93153](rust-lang#93153) on 2022-01-22. As a result, today RFC 2972 has completely superseded RFC 1201 in describing the semantics of the `naked` attribute. More recently, the `naked_asm!` macro was added to replace the earlier use of a heavily restricted `asm!` invocation. The `naked_asm!` name is clearer in error messages, and provides a place for documenting the specific requirements of inline assembly in naked functions. The implementation strategy was changed to emitting a global assembly block. In effect, an extern function ```rust extern "C" fn foo() { core::arch::naked_asm!("ret") } ``` is emitted as something similar to ```rust core::arch::global_asm!( "foo:", "ret" ); extern "C" { fn foo(); } ``` The codegen approach was chosen over the llvm naked function attribute because: - the rust compiler can guarantee the behavior (no sneaky additional instructions, no inlining, etc.) - behavior is the same on all backends (llvm, cranelift, gcc, etc) Finally, there is now an allow list of compatible attributes on naked functions, so that e.g. `#[inline]` is rejected with an error. The `#[target_feature]` attribute on naked functions was later made separately unstable, because implementing it is complex and we did not want to block naked functions themselves on how target features work on them. See also rust-lang#138568. relevant PRs for these recent changes - rust-lang#127853 - rust-lang#128651 - rust-lang#128004 - rust-lang#138570 - ### Various historical notes #### `noreturn` [RFC 2972](https://github.com/rust-lang/rfcs/blob/master/text/2972-constrained-naked.md) mentions that naked functions > must have a body which contains only a single asm!() statement which: > iii. must contain the noreturn option. Instead of `asm!`, the current implementation mandates that the body contain a single `naked_asm!` statement. The `naked_asm!` macro is a heavily restricted version of the `asm!` macro, making it easier to talk about and document the rules of assembly in naked functions and give dedicated error messages. For `naked_asm!`, the behavior of the `asm!`'s `noreturn` option is implicit. The `noreturn` option means that it is UB for control flow to fall through the end of the assembly block. With `asm!`, this option is usually used for blocks that diverge (and thus have no return and can be typed as `!`). With `naked_asm!`, the intent is different: usually naked funtions do return, but they must do so from within the assembly block. The `noreturn` option was used so that the compiler would not itself also insert a `ret` instruction at the very end. #### padding / `ud2` A `naked_asm!` block that violates the safety assumption that control flow must not fall through the end of the assembly block is UB. Because no return instruction is emitted, whatever bytes follow the naked function will be executed, resulting in truly undefined behavior. There has been discussion whether rustc should emit an invalid instruction (e.g. `ud2` on x86) after the `naked_asm!` block to at least fail early in the case of an invalid `naked_asm!`. It was however decided that it is more useful to guarantee that `#[naked]` functions NEVER contain any instructions besides those in the `naked_asm!` block. # unresolved questions None r? `@Amanieu` I've validated the tests on x86_64 and aarch64
ChrisDenton
added a commit
to ChrisDenton/rust
that referenced
this issue
Apr 21, 2025
…ns, r=tgross35,Amanieu,traviscross Stabilize `naked_functions` tracking issue: rust-lang#90957 request for stabilization on tracking issue: rust-lang#90957 (comment) reference PR: rust-lang/reference#1689 # Request for Stabilization Two years later, we're ready to try this again. Even though this issue is already marked as having passed FCP, given the amount of time that has passed and the changes in implementation strategy, we should follow the process again. ## Summary The `naked_functions` feature has two main parts: the `#[naked]` function attribute, and the `naked_asm!` macro. An example of a naked function: ```rust const THREE: usize = 3; #[naked] pub extern "sysv64" fn add_n(number: usize) -> usize { // SAFETY: the validity of the used registers // is guaranteed according to the "sysv64" ABI unsafe { core::arch::naked_asm!( "add rdi, {}", "mov rax, rdi", "ret", const THREE, ) } } ``` When the `#[naked]` attribute is applied to a function, the compiler won't emit a [function prologue](https://en.wikipedia.org/wiki/Function_prologue_and_epilogue) or epilogue when generating code for this function. This attribute is analogous to [`__attribute__((naked))`](https://developer.arm.com/documentation/100067/0608/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----naked---function-attribute) in C. The use of this feature allows the programmer to have precise control over the assembly that is generated for a given function. The body of a naked function must consist of a single `naked_asm!` invocation, a heavily restricted variant of the `asm!` macro: the only legal operands are `const` and `sym`, and the only legal options are `raw` and `att_syntax`. In lieu of specifying operands, the `naked_asm!` within a naked function relies on the function's calling convention to determine the validity of registers. ## Documentation The Rust Reference: rust-lang/reference#1689 (Previous PR: rust-lang/reference#1153) ## Tests * [tests/run-make/naked-symbol-visiblity](https://github.com/rust-lang/rust/tree/master/tests/codegen/naked-fn) verifies that `pub`, `#[no_mangle]` and `#[linkage = "..."]` work correctly for naked functions * [tests/codegen/naked-fn](https://github.com/rust-lang/rust/tree/master/tests/codegen/naked-fn) has tests for function alignment, use of generics, and validates the exact assembly output on linux, macos, windows and thumb * [tests/ui/asm/naked-*](https://github.com/rust-lang/rust/tree/master/tests/ui/asm) tests for incompatible attributes, generating errors around incorrect use of `naked_asm!`, etc ## Interaction with other (unstable) features ### [fn_align](rust-lang#82232) Combining `#[naked]` with `#[repr(align(N))]` works well, and is tested e.g. here - https://github.com/rust-lang/rust/blob/master/tests/codegen/naked-fn/aligned.rs - https://github.com/rust-lang/rust/blob/master/tests/codegen/naked-fn/min-function-alignment.rs It's tested extensively because we do need to explicitly support the `repr(align)` attribute (and make sure we e.g. don't mistake powers of two for number of bytes). ## History This feature was originally proposed in [RFC 1201](rust-lang/rfcs#1201), filed on 2015-07-10 and accepted on 2016-03-21. Support for this feature was added in [rust-lang#32410](rust-lang#32410), landing on 2016-03-23. Development languished for several years as it was realized that the semantics given in RFC 1201 were insufficiently specific. To address this, a minimal subset of naked functions was specified by [RFC 2972](rust-lang/rfcs#2972), filed on 2020-08-07 and accepted on 2021-11-16. Prior to the acceptance of RFC 2972, all of the stricter behavior specified by RFC 2972 was implemented as a series of warn-by-default lints that would trigger on existing uses of the `naked` attribute; these lints became hard errors in [rust-lang#93153](rust-lang#93153) on 2022-01-22. As a result, today RFC 2972 has completely superseded RFC 1201 in describing the semantics of the `naked` attribute. More recently, the `naked_asm!` macro was added to replace the earlier use of a heavily restricted `asm!` invocation. The `naked_asm!` name is clearer in error messages, and provides a place for documenting the specific requirements of inline assembly in naked functions. The implementation strategy was changed to emitting a global assembly block. In effect, an extern function ```rust extern "C" fn foo() { core::arch::naked_asm!("ret") } ``` is emitted as something similar to ```rust core::arch::global_asm!( "foo:", "ret" ); extern "C" { fn foo(); } ``` The codegen approach was chosen over the llvm naked function attribute because: - the rust compiler can guarantee the behavior (no sneaky additional instructions, no inlining, etc.) - behavior is the same on all backends (llvm, cranelift, gcc, etc) Finally, there is now an allow list of compatible attributes on naked functions, so that e.g. `#[inline]` is rejected with an error. The `#[target_feature]` attribute on naked functions was later made separately unstable, because implementing it is complex and we did not want to block naked functions themselves on how target features work on them. See also rust-lang#138568. relevant PRs for these recent changes - rust-lang#127853 - rust-lang#128651 - rust-lang#128004 - rust-lang#138570 - ### Various historical notes #### `noreturn` [RFC 2972](https://github.com/rust-lang/rfcs/blob/master/text/2972-constrained-naked.md) mentions that naked functions > must have a body which contains only a single asm!() statement which: > iii. must contain the noreturn option. Instead of `asm!`, the current implementation mandates that the body contain a single `naked_asm!` statement. The `naked_asm!` macro is a heavily restricted version of the `asm!` macro, making it easier to talk about and document the rules of assembly in naked functions and give dedicated error messages. For `naked_asm!`, the behavior of the `asm!`'s `noreturn` option is implicit. The `noreturn` option means that it is UB for control flow to fall through the end of the assembly block. With `asm!`, this option is usually used for blocks that diverge (and thus have no return and can be typed as `!`). With `naked_asm!`, the intent is different: usually naked funtions do return, but they must do so from within the assembly block. The `noreturn` option was used so that the compiler would not itself also insert a `ret` instruction at the very end. #### padding / `ud2` A `naked_asm!` block that violates the safety assumption that control flow must not fall through the end of the assembly block is UB. Because no return instruction is emitted, whatever bytes follow the naked function will be executed, resulting in truly undefined behavior. There has been discussion whether rustc should emit an invalid instruction (e.g. `ud2` on x86) after the `naked_asm!` block to at least fail early in the case of an invalid `naked_asm!`. It was however decided that it is more useful to guarantee that `#[naked]` functions NEVER contain any instructions besides those in the `naked_asm!` block. # unresolved questions None r? ``@Amanieu`` I've validated the tests on x86_64 and aarch64
rust-timer
added a commit
to rust-lang-ci/rust
that referenced
this issue
Apr 21, 2025
Rollup merge of rust-lang#134213 - folkertdev:stabilize-naked-functions, r=tgross35,Amanieu,traviscross Stabilize `naked_functions` tracking issue: rust-lang#90957 request for stabilization on tracking issue: rust-lang#90957 (comment) reference PR: rust-lang/reference#1689 # Request for Stabilization Two years later, we're ready to try this again. Even though this issue is already marked as having passed FCP, given the amount of time that has passed and the changes in implementation strategy, we should follow the process again. ## Summary The `naked_functions` feature has two main parts: the `#[naked]` function attribute, and the `naked_asm!` macro. An example of a naked function: ```rust const THREE: usize = 3; #[naked] pub extern "sysv64" fn add_n(number: usize) -> usize { // SAFETY: the validity of the used registers // is guaranteed according to the "sysv64" ABI unsafe { core::arch::naked_asm!( "add rdi, {}", "mov rax, rdi", "ret", const THREE, ) } } ``` When the `#[naked]` attribute is applied to a function, the compiler won't emit a [function prologue](https://en.wikipedia.org/wiki/Function_prologue_and_epilogue) or epilogue when generating code for this function. This attribute is analogous to [`__attribute__((naked))`](https://developer.arm.com/documentation/100067/0608/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----naked---function-attribute) in C. The use of this feature allows the programmer to have precise control over the assembly that is generated for a given function. The body of a naked function must consist of a single `naked_asm!` invocation, a heavily restricted variant of the `asm!` macro: the only legal operands are `const` and `sym`, and the only legal options are `raw` and `att_syntax`. In lieu of specifying operands, the `naked_asm!` within a naked function relies on the function's calling convention to determine the validity of registers. ## Documentation The Rust Reference: rust-lang/reference#1689 (Previous PR: rust-lang/reference#1153) ## Tests * [tests/run-make/naked-symbol-visiblity](https://github.com/rust-lang/rust/tree/master/tests/codegen/naked-fn) verifies that `pub`, `#[no_mangle]` and `#[linkage = "..."]` work correctly for naked functions * [tests/codegen/naked-fn](https://github.com/rust-lang/rust/tree/master/tests/codegen/naked-fn) has tests for function alignment, use of generics, and validates the exact assembly output on linux, macos, windows and thumb * [tests/ui/asm/naked-*](https://github.com/rust-lang/rust/tree/master/tests/ui/asm) tests for incompatible attributes, generating errors around incorrect use of `naked_asm!`, etc ## Interaction with other (unstable) features ### [fn_align](rust-lang#82232) Combining `#[naked]` with `#[repr(align(N))]` works well, and is tested e.g. here - https://github.com/rust-lang/rust/blob/master/tests/codegen/naked-fn/aligned.rs - https://github.com/rust-lang/rust/blob/master/tests/codegen/naked-fn/min-function-alignment.rs It's tested extensively because we do need to explicitly support the `repr(align)` attribute (and make sure we e.g. don't mistake powers of two for number of bytes). ## History This feature was originally proposed in [RFC 1201](rust-lang/rfcs#1201), filed on 2015-07-10 and accepted on 2016-03-21. Support for this feature was added in [rust-lang#32410](rust-lang#32410), landing on 2016-03-23. Development languished for several years as it was realized that the semantics given in RFC 1201 were insufficiently specific. To address this, a minimal subset of naked functions was specified by [RFC 2972](rust-lang/rfcs#2972), filed on 2020-08-07 and accepted on 2021-11-16. Prior to the acceptance of RFC 2972, all of the stricter behavior specified by RFC 2972 was implemented as a series of warn-by-default lints that would trigger on existing uses of the `naked` attribute; these lints became hard errors in [rust-lang#93153](rust-lang#93153) on 2022-01-22. As a result, today RFC 2972 has completely superseded RFC 1201 in describing the semantics of the `naked` attribute. More recently, the `naked_asm!` macro was added to replace the earlier use of a heavily restricted `asm!` invocation. The `naked_asm!` name is clearer in error messages, and provides a place for documenting the specific requirements of inline assembly in naked functions. The implementation strategy was changed to emitting a global assembly block. In effect, an extern function ```rust extern "C" fn foo() { core::arch::naked_asm!("ret") } ``` is emitted as something similar to ```rust core::arch::global_asm!( "foo:", "ret" ); extern "C" { fn foo(); } ``` The codegen approach was chosen over the llvm naked function attribute because: - the rust compiler can guarantee the behavior (no sneaky additional instructions, no inlining, etc.) - behavior is the same on all backends (llvm, cranelift, gcc, etc) Finally, there is now an allow list of compatible attributes on naked functions, so that e.g. `#[inline]` is rejected with an error. The `#[target_feature]` attribute on naked functions was later made separately unstable, because implementing it is complex and we did not want to block naked functions themselves on how target features work on them. See also rust-lang#138568. relevant PRs for these recent changes - rust-lang#127853 - rust-lang#128651 - rust-lang#128004 - rust-lang#138570 - ### Various historical notes #### `noreturn` [RFC 2972](https://github.com/rust-lang/rfcs/blob/master/text/2972-constrained-naked.md) mentions that naked functions > must have a body which contains only a single asm!() statement which: > iii. must contain the noreturn option. Instead of `asm!`, the current implementation mandates that the body contain a single `naked_asm!` statement. The `naked_asm!` macro is a heavily restricted version of the `asm!` macro, making it easier to talk about and document the rules of assembly in naked functions and give dedicated error messages. For `naked_asm!`, the behavior of the `asm!`'s `noreturn` option is implicit. The `noreturn` option means that it is UB for control flow to fall through the end of the assembly block. With `asm!`, this option is usually used for blocks that diverge (and thus have no return and can be typed as `!`). With `naked_asm!`, the intent is different: usually naked funtions do return, but they must do so from within the assembly block. The `noreturn` option was used so that the compiler would not itself also insert a `ret` instruction at the very end. #### padding / `ud2` A `naked_asm!` block that violates the safety assumption that control flow must not fall through the end of the assembly block is UB. Because no return instruction is emitted, whatever bytes follow the naked function will be executed, resulting in truly undefined behavior. There has been discussion whether rustc should emit an invalid instruction (e.g. `ud2` on x86) after the `naked_asm!` block to at least fail early in the case of an invalid `naked_asm!`. It was however decided that it is more useful to guarantee that `#[naked]` functions NEVER contain any instructions besides those in the `naked_asm!` block. # unresolved questions None r? ``@Amanieu`` I've validated the tests on x86_64 and aarch64
github-actions bot
pushed a commit
to rust-lang/miri
that referenced
this issue
Apr 22, 2025
…oss35,Amanieu,traviscross Stabilize `naked_functions` tracking issue: rust-lang/rust#90957 request for stabilization on tracking issue: rust-lang/rust#90957 (comment) reference PR: rust-lang/reference#1689 # Request for Stabilization Two years later, we're ready to try this again. Even though this issue is already marked as having passed FCP, given the amount of time that has passed and the changes in implementation strategy, we should follow the process again. ## Summary The `naked_functions` feature has two main parts: the `#[naked]` function attribute, and the `naked_asm!` macro. An example of a naked function: ```rust const THREE: usize = 3; #[naked] pub extern "sysv64" fn add_n(number: usize) -> usize { // SAFETY: the validity of the used registers // is guaranteed according to the "sysv64" ABI unsafe { core::arch::naked_asm!( "add rdi, {}", "mov rax, rdi", "ret", const THREE, ) } } ``` When the `#[naked]` attribute is applied to a function, the compiler won't emit a [function prologue](https://en.wikipedia.org/wiki/Function_prologue_and_epilogue) or epilogue when generating code for this function. This attribute is analogous to [`__attribute__((naked))`](https://developer.arm.com/documentation/100067/0608/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----naked---function-attribute) in C. The use of this feature allows the programmer to have precise control over the assembly that is generated for a given function. The body of a naked function must consist of a single `naked_asm!` invocation, a heavily restricted variant of the `asm!` macro: the only legal operands are `const` and `sym`, and the only legal options are `raw` and `att_syntax`. In lieu of specifying operands, the `naked_asm!` within a naked function relies on the function's calling convention to determine the validity of registers. ## Documentation The Rust Reference: rust-lang/reference#1689 (Previous PR: rust-lang/reference#1153) ## Tests * [tests/run-make/naked-symbol-visiblity](https://github.com/rust-lang/rust/tree/master/tests/codegen/naked-fn) verifies that `pub`, `#[no_mangle]` and `#[linkage = "..."]` work correctly for naked functions * [tests/codegen/naked-fn](https://github.com/rust-lang/rust/tree/master/tests/codegen/naked-fn) has tests for function alignment, use of generics, and validates the exact assembly output on linux, macos, windows and thumb * [tests/ui/asm/naked-*](https://github.com/rust-lang/rust/tree/master/tests/ui/asm) tests for incompatible attributes, generating errors around incorrect use of `naked_asm!`, etc ## Interaction with other (unstable) features ### [fn_align](rust-lang/rust#82232) Combining `#[naked]` with `#[repr(align(N))]` works well, and is tested e.g. here - https://github.com/rust-lang/rust/blob/master/tests/codegen/naked-fn/aligned.rs - https://github.com/rust-lang/rust/blob/master/tests/codegen/naked-fn/min-function-alignment.rs It's tested extensively because we do need to explicitly support the `repr(align)` attribute (and make sure we e.g. don't mistake powers of two for number of bytes). ## History This feature was originally proposed in [RFC 1201](rust-lang/rfcs#1201), filed on 2015-07-10 and accepted on 2016-03-21. Support for this feature was added in [#32410](rust-lang/rust#32410), landing on 2016-03-23. Development languished for several years as it was realized that the semantics given in RFC 1201 were insufficiently specific. To address this, a minimal subset of naked functions was specified by [RFC 2972](rust-lang/rfcs#2972), filed on 2020-08-07 and accepted on 2021-11-16. Prior to the acceptance of RFC 2972, all of the stricter behavior specified by RFC 2972 was implemented as a series of warn-by-default lints that would trigger on existing uses of the `naked` attribute; these lints became hard errors in [#93153](rust-lang/rust#93153) on 2022-01-22. As a result, today RFC 2972 has completely superseded RFC 1201 in describing the semantics of the `naked` attribute. More recently, the `naked_asm!` macro was added to replace the earlier use of a heavily restricted `asm!` invocation. The `naked_asm!` name is clearer in error messages, and provides a place for documenting the specific requirements of inline assembly in naked functions. The implementation strategy was changed to emitting a global assembly block. In effect, an extern function ```rust extern "C" fn foo() { core::arch::naked_asm!("ret") } ``` is emitted as something similar to ```rust core::arch::global_asm!( "foo:", "ret" ); extern "C" { fn foo(); } ``` The codegen approach was chosen over the llvm naked function attribute because: - the rust compiler can guarantee the behavior (no sneaky additional instructions, no inlining, etc.) - behavior is the same on all backends (llvm, cranelift, gcc, etc) Finally, there is now an allow list of compatible attributes on naked functions, so that e.g. `#[inline]` is rejected with an error. The `#[target_feature]` attribute on naked functions was later made separately unstable, because implementing it is complex and we did not want to block naked functions themselves on how target features work on them. See also rust-lang/rust#138568. relevant PRs for these recent changes - rust-lang/rust#127853 - rust-lang/rust#128651 - rust-lang/rust#128004 - rust-lang/rust#138570 - ### Various historical notes #### `noreturn` [RFC 2972](https://github.com/rust-lang/rfcs/blob/master/text/2972-constrained-naked.md) mentions that naked functions > must have a body which contains only a single asm!() statement which: > iii. must contain the noreturn option. Instead of `asm!`, the current implementation mandates that the body contain a single `naked_asm!` statement. The `naked_asm!` macro is a heavily restricted version of the `asm!` macro, making it easier to talk about and document the rules of assembly in naked functions and give dedicated error messages. For `naked_asm!`, the behavior of the `asm!`'s `noreturn` option is implicit. The `noreturn` option means that it is UB for control flow to fall through the end of the assembly block. With `asm!`, this option is usually used for blocks that diverge (and thus have no return and can be typed as `!`). With `naked_asm!`, the intent is different: usually naked funtions do return, but they must do so from within the assembly block. The `noreturn` option was used so that the compiler would not itself also insert a `ret` instruction at the very end. #### padding / `ud2` A `naked_asm!` block that violates the safety assumption that control flow must not fall through the end of the assembly block is UB. Because no return instruction is emitted, whatever bytes follow the naked function will be executed, resulting in truly undefined behavior. There has been discussion whether rustc should emit an invalid instruction (e.g. `ud2` on x86) after the `naked_asm!` block to at least fail early in the case of an invalid `naked_asm!`. It was however decided that it is more useful to guarantee that `#[naked]` functions NEVER contain any instructions besides those in the `naked_asm!` block. # unresolved questions None r? ``@Amanieu`` I've validated the tests on x86_64 and aarch64
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Labels
A-attributes
Area: Attributes (`#[…]`, `#![…]`)
A-naked
Area: `#[naked]`, prologue and epilogue-free, functions, https://git.io/vAzzS
A-target-feature
Area: Enabling/disabling target features like AVX, Neon, etc.
C-tracking-issue
Category: An issue tracking the progress of sth. like the implementation of an RFC
F-naked_functions_target_feature
`#![feature(naked_functions_target_feature)]`
F-naked_functions
`#![feature(naked_functions)]`
T-compiler
Relevant to the compiler team, which will review and decide on the PR/issue.
T-lang
Relevant to the language team, which will review and decide on the PR/issue.
The feature gate for the issue is
#![feature(naked_functions_target_feature)]
.The
#[target_feature(enable = "...")]
attribute on standard functions can have two effects:At the time of writing,
target_feature
is ignored when generating code for naked functions even with this feature enabled! Hence, you almost certainly don't need to enable this feature.If you need to change what instructions are accepted, you can use assembler directives in the naked assembly. See #137720 for examples on how to do that on the most common platforms.
For naked functions, a
target_feature
does not change the generated code of that function: naked functions must already assume that their registers are in particular registers, and can document assumptions about e.g. the use of vector registers as safety conditions on the naked function itself. Hence, the target feature is useful only as documentation, and currently not strictly needed. Note that there are plans to it a hard requirement that functions using vector types in their signature enable the relevant target features.About tracking issues
Tracking issues are used to record the overall progress of implementation.
They are also used as hubs connecting to other relevant issues, e.g., bugs or open design questions.
A tracking issue is however not meant for large scale discussion, questions, or bug reports about a feature.
Instead, open a dedicated issue for the specific matter and add the relevant feature gate label.
Discussion comments will get marked as off-topic or deleted.
Repeated discussions on the tracking issue may lead to the tracking issue getting locked.
Steps
instructions?)
Unresolved Questions
Implementation history
The text was updated successfully, but these errors were encountered: