Skip to content

Specialize flattening iterators with only one inner item #121204

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
221 changes: 209 additions & 12 deletions library/core/src/iter/adapters/flatten.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ use crate::iter::{
Cloned, Copied, Filter, FilterMap, Fuse, FusedIterator, InPlaceIterable, Map, TrustedFused,
TrustedLen,
};
use crate::iter::{Once, OnceWith};
use crate::iter::{Empty, Once, OnceWith};
use crate::num::NonZero;
use crate::ops::{ControlFlow, Try};
use crate::result;
Expand Down Expand Up @@ -593,6 +593,7 @@ where
}
}

// See also the `OneShot` specialization below.
impl<I, U> Iterator for FlattenCompat<I, U>
where
I: Iterator<Item: IntoIterator<IntoIter = U, Item = U::Item>>,
Expand All @@ -601,7 +602,7 @@ where
type Item = U::Item;

#[inline]
fn next(&mut self) -> Option<U::Item> {
default fn next(&mut self) -> Option<U::Item> {
loop {
if let elt @ Some(_) = and_then_or_clear(&mut self.frontiter, Iterator::next) {
return elt;
Expand All @@ -614,7 +615,7 @@ where
}

#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
default fn size_hint(&self) -> (usize, Option<usize>) {
let (flo, fhi) = self.frontiter.as_ref().map_or((0, Some(0)), U::size_hint);
let (blo, bhi) = self.backiter.as_ref().map_or((0, Some(0)), U::size_hint);
let lo = flo.saturating_add(blo);
Expand All @@ -636,7 +637,7 @@ where
}

#[inline]
fn try_fold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R
default fn try_fold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R
where
Self: Sized,
Fold: FnMut(Acc, Self::Item) -> R,
Expand All @@ -653,7 +654,7 @@ where
}

#[inline]
fn fold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
default fn fold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
Expand All @@ -669,7 +670,7 @@ where

#[inline]
#[rustc_inherit_overflow_checks]
fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
default fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
#[inline]
#[rustc_inherit_overflow_checks]
fn advance<U: Iterator>(n: usize, iter: &mut U) -> ControlFlow<(), usize> {
Expand All @@ -686,7 +687,7 @@ where
}

#[inline]
fn count(self) -> usize {
default fn count(self) -> usize {
#[inline]
#[rustc_inherit_overflow_checks]
fn count<U: Iterator>(acc: usize, iter: U) -> usize {
Expand All @@ -697,7 +698,7 @@ where
}

#[inline]
fn last(self) -> Option<Self::Item> {
default fn last(self) -> Option<Self::Item> {
#[inline]
fn last<U: Iterator>(last: Option<U::Item>, iter: U) -> Option<U::Item> {
iter.last().or(last)
Expand All @@ -707,13 +708,14 @@ where
}
}

// See also the `OneShot` specialization below.
impl<I, U> DoubleEndedIterator for FlattenCompat<I, U>
where
I: DoubleEndedIterator<Item: IntoIterator<IntoIter = U, Item = U::Item>>,
U: DoubleEndedIterator,
{
#[inline]
fn next_back(&mut self) -> Option<U::Item> {
default fn next_back(&mut self) -> Option<U::Item> {
loop {
if let elt @ Some(_) = and_then_or_clear(&mut self.backiter, |b| b.next_back()) {
return elt;
Expand All @@ -726,7 +728,7 @@ where
}

#[inline]
fn try_rfold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R
default fn try_rfold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R
where
Self: Sized,
Fold: FnMut(Acc, Self::Item) -> R,
Expand All @@ -743,7 +745,7 @@ where
}

#[inline]
fn rfold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
default fn rfold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
Expand All @@ -759,7 +761,7 @@ where

#[inline]
#[rustc_inherit_overflow_checks]
fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
default fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
#[inline]
#[rustc_inherit_overflow_checks]
fn advance<U: DoubleEndedIterator>(n: usize, iter: &mut U) -> ControlFlow<(), usize> {
Expand Down Expand Up @@ -841,3 +843,198 @@ fn and_then_or_clear<T, U>(opt: &mut Option<T>, f: impl FnOnce(&mut T) -> Option
}
x
}

/// Specialization trait for iterator types that never return more than one item.
///
/// Note that we still have to deal with the possibility that the iterator was
/// already exhausted before it came into our control.
#[rustc_specialization_trait]
trait OneShot {}

// These all have exactly one item, if not already consumed.
impl<T> OneShot for Once<T> {}
impl<F> OneShot for OnceWith<F> {}
impl<T> OneShot for array::IntoIter<T, 1> {}
impl<T> OneShot for option::IntoIter<T> {}
impl<T> OneShot for option::Iter<'_, T> {}
impl<T> OneShot for option::IterMut<'_, T> {}
impl<T> OneShot for result::IntoIter<T> {}
impl<T> OneShot for result::Iter<'_, T> {}
impl<T> OneShot for result::IterMut<'_, T> {}

// These are always empty, which is fine to optimize too.
impl<T> OneShot for Empty<T> {}
impl<T> OneShot for array::IntoIter<T, 0> {}
Comment on lines +865 to +867
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I wonder if something flattening over those exists in the wild, but sure, why not.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yeah, it would be weird, but maybe in some generic or macro code?
I wouldn't bother with this if it weren't trivial, for sure.


// These adaptors never increase the number of items.
// (There are more possible, but for now this matches BoundedSize above.)
impl<I: OneShot> OneShot for Cloned<I> {}
impl<I: OneShot> OneShot for Copied<I> {}
impl<I: OneShot, P> OneShot for Filter<I, P> {}
impl<I: OneShot, P> OneShot for FilterMap<I, P> {}
impl<I: OneShot, F> OneShot for Map<I, F> {}

// Blanket impls pass this property through as well
// (but we can't do `Box<I>` unless we expose this trait to alloc)
impl<I: OneShot> OneShot for &mut I {}

#[inline]
fn into_item<I>(inner: I) -> Option<I::Item>
where
I: IntoIterator<IntoIter: OneShot>,
{
inner.into_iter().next()
}

#[inline]
fn flatten_one<I: IntoIterator<IntoIter: OneShot>, Acc>(
mut fold: impl FnMut(Acc, I::Item) -> Acc,
) -> impl FnMut(Acc, I) -> Acc {
move |acc, inner| match inner.into_iter().next() {
Some(item) => fold(acc, item),
None => acc,
}
}

#[inline]
fn try_flatten_one<I: IntoIterator<IntoIter: OneShot>, Acc, R: Try<Output = Acc>>(
mut fold: impl FnMut(Acc, I::Item) -> R,
) -> impl FnMut(Acc, I) -> R {
move |acc, inner| match inner.into_iter().next() {
Some(item) => fold(acc, item),
None => try { acc },
}
}

#[inline]
fn advance_by_one<I>(n: NonZero<usize>, inner: I) -> Option<NonZero<usize>>
where
I: IntoIterator<IntoIter: OneShot>,
{
match inner.into_iter().next() {
Some(_) => NonZero::new(n.get() - 1),
None => Some(n),
}
}

// Specialization: When the inner iterator `U` never returns more than one item, the `frontiter` and
// `backiter` states are a waste, because they'll always have already consumed their item. So in
// this impl, we completely ignore them and just focus on `self.iter`, and we only call the inner
// `U::next()` one time.
//
// It's mostly fine if we accidentally mix this with the more generic impls, e.g. by forgetting to
// specialize one of the methods. If the other impl did set the front or back, we wouldn't see it
// here, but it would be empty anyway; and if the other impl looked for a front or back that we
// didn't bother setting, it would just see `None` (or a previous empty) and move on.
//
// An exception to that is `advance_by(0)` and `advance_back_by(0)`, where the generic impls may set
// `frontiter` or `backiter` without consuming the item, so we **must** override those.
impl<I, U> Iterator for FlattenCompat<I, U>
where
I: Iterator<Item: IntoIterator<IntoIter = U, Item = U::Item>>,
U: Iterator + OneShot,
{
#[inline]
fn next(&mut self) -> Option<U::Item> {
while let Some(inner) = self.iter.next() {
if let item @ Some(_) = inner.into_iter().next() {
return item;
}
}
None
}

#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (lower, upper) = self.iter.size_hint();
match <I::Item as ConstSizeIntoIterator>::size() {
Some(0) => (0, Some(0)),
Some(1) => (lower, upper),
_ => (0, upper),
}
}

#[inline]
fn try_fold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R
where
Self: Sized,
Fold: FnMut(Acc, Self::Item) -> R,
R: Try<Output = Acc>,
{
self.iter.try_fold(init, try_flatten_one(fold))
}

#[inline]
fn fold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
self.iter.fold(init, flatten_one(fold))
}

#[inline]
fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
if let Some(n) = NonZero::new(n) {
self.iter.try_fold(n, advance_by_one).map_or(Ok(()), Err)
} else {
// Just advance the outer iterator
self.iter.advance_by(0)
}
}

#[inline]
fn count(self) -> usize {
self.iter.filter_map(into_item).count()
}

#[inline]
fn last(self) -> Option<Self::Item> {
self.iter.filter_map(into_item).last()
}
}

// Note: We don't actually care about `U: DoubleEndedIterator`, since forward and backward are the
// same for a one-shot iterator, but we have to keep that to match the default specialization.
impl<I, U> DoubleEndedIterator for FlattenCompat<I, U>
where
I: DoubleEndedIterator<Item: IntoIterator<IntoIter = U, Item = U::Item>>,
U: DoubleEndedIterator + OneShot,
{
#[inline]
fn next_back(&mut self) -> Option<U::Item> {
while let Some(inner) = self.iter.next_back() {
if let item @ Some(_) = inner.into_iter().next() {
return item;
}
}
None
}

#[inline]
fn try_rfold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R
where
Self: Sized,
Fold: FnMut(Acc, Self::Item) -> R,
R: Try<Output = Acc>,
{
self.iter.try_rfold(init, try_flatten_one(fold))
}

#[inline]
fn rfold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
self.iter.rfold(init, flatten_one(fold))
}

#[inline]
fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
if let Some(n) = NonZero::new(n) {
self.iter.try_rfold(n, advance_by_one).map_or(Ok(()), Err)
} else {
// Just advance the outer iterator
self.iter.advance_back_by(0)
}
}
}
66 changes: 66 additions & 0 deletions library/core/tests/iter/adapters/flatten.rs
Original file line number Diff line number Diff line change
Expand Up @@ -212,3 +212,69 @@ fn test_flatten_last() {
assert_eq!(it.advance_by(3), Ok(())); // 22..22
assert_eq!(it.clone().last(), None);
}

#[test]
fn test_flatten_one_shot() {
// This could be `filter_map`, but people often do flatten options.
let mut it = (0i8..10).flat_map(|i| NonZero::new(i % 7));
assert_eq!(it.size_hint(), (0, Some(10)));
assert_eq!(it.clone().count(), 8);
assert_eq!(it.clone().last(), NonZero::new(2));

// sum -> fold
let sum: i8 = it.clone().map(|n| n.get()).sum();
assert_eq!(sum, 24);

// the product overflows at 6, remaining are 7,8,9 -> 1,2
let one = NonZero::new(1i8).unwrap();
let product = it.try_fold(one, |acc, x| acc.checked_mul(x));
assert_eq!(product, None);
assert_eq!(it.size_hint(), (0, Some(3)));
assert_eq!(it.clone().count(), 2);

assert_eq!(it.advance_by(0), Ok(()));
assert_eq!(it.clone().next(), NonZero::new(1));
assert_eq!(it.advance_by(1), Ok(()));
assert_eq!(it.clone().next(), NonZero::new(2));
assert_eq!(it.advance_by(100), Err(NonZero::new(99).unwrap()));
assert_eq!(it.next(), None);
}

#[test]
fn test_flatten_one_shot_rev() {
let mut it = (0i8..10).flat_map(|i| NonZero::new(i % 7)).rev();
assert_eq!(it.size_hint(), (0, Some(10)));
assert_eq!(it.clone().count(), 8);
assert_eq!(it.clone().last(), NonZero::new(1));

// sum -> Rev fold -> rfold
let sum: i8 = it.clone().map(|n| n.get()).sum();
assert_eq!(sum, 24);

// Rev try_fold -> try_rfold
// the product overflows at 4, remaining are 3,2,1,0 -> 3,2,1
let one = NonZero::new(1i8).unwrap();
let product = it.try_fold(one, |acc, x| acc.checked_mul(x));
assert_eq!(product, None);
assert_eq!(it.size_hint(), (0, Some(4)));
assert_eq!(it.clone().count(), 3);

// Rev advance_by -> advance_back_by
assert_eq!(it.advance_by(0), Ok(()));
assert_eq!(it.clone().next(), NonZero::new(3));
assert_eq!(it.advance_by(1), Ok(()));
assert_eq!(it.clone().next(), NonZero::new(2));
assert_eq!(it.advance_by(100), Err(NonZero::new(98).unwrap()));
assert_eq!(it.next(), None);
}

#[test]
fn test_flatten_one_shot_arrays() {
let it = (0..10).flat_map(|i| [i]);
assert_eq!(it.size_hint(), (10, Some(10)));
assert_eq!(it.sum::<i32>(), 45);

let mut it = (0..10).flat_map(|_| -> [i32; 0] { [] });
assert_eq!(it.size_hint(), (0, Some(0)));
assert_eq!(it.next(), None);
}