Skip to content

Rollup of 6 pull requests #86417

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Jun 18, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions RELEASES.md
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,7 @@ Compatibility Notes
In particular, this was known to be a problem in the `lexical-core` crate,
but they have published fixes for semantic versions 0.4 through 0.7. To
update this dependency alone, use `cargo update -p lexical-core`.
- Incremental compilation remains off by default, unless one uses the `RUSTC_FORCE_INCREMENTAL=1` environment variable added in 1.52.1.

Internal Only
-------------
Expand Down
7 changes: 1 addition & 6 deletions compiler/rustc_builtin_macros/src/deriving/encodable.rs
Original file line number Diff line number Diff line change
Expand Up @@ -124,12 +124,7 @@ pub fn expand_deriving_rustc_encodable(
explicit_self: borrowed_explicit_self(),
args: vec![(
Ptr(Box::new(Literal(Path::new_local(typaram))), Borrowed(None, Mutability::Mut)),
// FIXME: we could use `sym::s` here, but making `s` a static
// symbol changes the symbol index ordering in a way that makes
// ui/lint/rfc-2457-non-ascii-idents/lint-confusable-idents.rs
// fail. The linting code should be fixed so that its output
// does not depend on the symbol index ordering.
Symbol::intern("s"),
sym::s,
)],
ret_ty: Literal(Path::new_(
pathvec_std!(result::Result),
Expand Down
7 changes: 5 additions & 2 deletions compiler/rustc_passes/src/check_attr.rs
Original file line number Diff line number Diff line change
Expand Up @@ -525,8 +525,11 @@ impl CheckAttrVisitor<'tcx> {
self.doc_attr_str_error(meta, "keyword");
return false;
}
match self.tcx.hir().expect_item(hir_id).kind {
ItemKind::Mod(ref module) => {
match self.tcx.hir().find(hir_id).and_then(|node| match node {
hir::Node::Item(item) => Some(&item.kind),
_ => None,
}) {
Some(ItemKind::Mod(ref module)) => {
if !module.item_ids.is_empty() {
self.tcx
.sess
Expand Down
1 change: 1 addition & 0 deletions compiler/rustc_span/src/symbol.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1062,6 +1062,7 @@ symbols! {
rustdoc,
rustfmt,
rvalue_static_promotion,
s,
sanitize,
sanitizer_runtime,
saturating_add,
Expand Down
36 changes: 36 additions & 0 deletions library/std/src/f32.rs
Original file line number Diff line number Diff line change
Expand Up @@ -876,4 +876,40 @@ impl f32 {
pub fn atanh(self) -> f32 {
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
}

/// Linear interpolation between `start` and `end`.
///
/// This enables linear interpolation between `start` and `end`, where start is represented by
/// `self == 0.0` and `end` is represented by `self == 1.0`. This is the basis of all
/// "transition", "easing", or "step" functions; if you change `self` from 0.0 to 1.0
/// at a given rate, the result will change from `start` to `end` at a similar rate.
///
/// Values below 0.0 or above 1.0 are allowed, allowing you to extrapolate values outside the
/// range from `start` to `end`. This also is useful for transition functions which might
/// move slightly past the end or start for a desired effect. Mathematically, the values
/// returned are equivalent to `start + self * (end - start)`, although we make a few specific
/// guarantees that are useful specifically to linear interpolation.
///
/// These guarantees are:
///
/// * If `start` and `end` are [finite], the value at 0.0 is always `start` and the
/// value at 1.0 is always `end`. (exactness)
/// * If `start` and `end` are [finite], the values will always move in the direction from
/// `start` to `end` (monotonicity)
/// * If `self` is [finite] and `start == end`, the value at any point will always be
/// `start == end`. (consistency)
///
/// [finite]: #method.is_finite
#[must_use = "method returns a new number and does not mutate the original value"]
#[unstable(feature = "float_interpolation", issue = "86269")]
pub fn lerp(self, start: f32, end: f32) -> f32 {
// consistent
if start == end {
start

// exact/monotonic
} else {
self.mul_add(end, (-self).mul_add(start, start))
}
}
}
63 changes: 63 additions & 0 deletions library/std/src/f32/tests.rs
Original file line number Diff line number Diff line change
Expand Up @@ -757,3 +757,66 @@ fn test_total_cmp() {
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::INFINITY));
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
}

#[test]
fn test_lerp_exact() {
// simple values
assert_eq!(f32::lerp(0.0, 2.0, 4.0), 2.0);
assert_eq!(f32::lerp(1.0, 2.0, 4.0), 4.0);

// boundary values
assert_eq!(f32::lerp(0.0, f32::MIN, f32::MAX), f32::MIN);
assert_eq!(f32::lerp(1.0, f32::MIN, f32::MAX), f32::MAX);
}

#[test]
fn test_lerp_consistent() {
assert_eq!(f32::lerp(f32::MAX, f32::MIN, f32::MIN), f32::MIN);
assert_eq!(f32::lerp(f32::MIN, f32::MAX, f32::MAX), f32::MAX);

// as long as t is finite, a/b can be infinite
assert_eq!(f32::lerp(f32::MAX, f32::NEG_INFINITY, f32::NEG_INFINITY), f32::NEG_INFINITY);
assert_eq!(f32::lerp(f32::MIN, f32::INFINITY, f32::INFINITY), f32::INFINITY);
}

#[test]
fn test_lerp_nan_infinite() {
// non-finite t is not NaN if a/b different
assert!(!f32::lerp(f32::INFINITY, f32::MIN, f32::MAX).is_nan());
assert!(!f32::lerp(f32::NEG_INFINITY, f32::MIN, f32::MAX).is_nan());
}

#[test]
fn test_lerp_values() {
// just a few basic values
assert_eq!(f32::lerp(0.25, 1.0, 2.0), 1.25);
assert_eq!(f32::lerp(0.50, 1.0, 2.0), 1.50);
assert_eq!(f32::lerp(0.75, 1.0, 2.0), 1.75);
}

#[test]
fn test_lerp_monotonic() {
// near 0
let below_zero = f32::lerp(-f32::EPSILON, f32::MIN, f32::MAX);
let zero = f32::lerp(0.0, f32::MIN, f32::MAX);
let above_zero = f32::lerp(f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_zero <= zero);
assert!(zero <= above_zero);
assert!(below_zero <= above_zero);

// near 0.5
let below_half = f32::lerp(0.5 - f32::EPSILON, f32::MIN, f32::MAX);
let half = f32::lerp(0.5, f32::MIN, f32::MAX);
let above_half = f32::lerp(0.5 + f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_half <= half);
assert!(half <= above_half);
assert!(below_half <= above_half);

// near 1
let below_one = f32::lerp(1.0 - f32::EPSILON, f32::MIN, f32::MAX);
let one = f32::lerp(1.0, f32::MIN, f32::MAX);
let above_one = f32::lerp(1.0 + f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_one <= one);
assert!(one <= above_one);
assert!(below_one <= above_one);
}
36 changes: 36 additions & 0 deletions library/std/src/f64.rs
Original file line number Diff line number Diff line change
Expand Up @@ -879,6 +879,42 @@ impl f64 {
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
}

/// Linear interpolation between `start` and `end`.
///
/// This enables linear interpolation between `start` and `end`, where start is represented by
/// `self == 0.0` and `end` is represented by `self == 1.0`. This is the basis of all
/// "transition", "easing", or "step" functions; if you change `self` from 0.0 to 1.0
/// at a given rate, the result will change from `start` to `end` at a similar rate.
///
/// Values below 0.0 or above 1.0 are allowed, allowing you to extrapolate values outside the
/// range from `start` to `end`. This also is useful for transition functions which might
/// move slightly past the end or start for a desired effect. Mathematically, the values
/// returned are equivalent to `start + self * (end - start)`, although we make a few specific
/// guarantees that are useful specifically to linear interpolation.
///
/// These guarantees are:
///
/// * If `start` and `end` are [finite], the value at 0.0 is always `start` and the
/// value at 1.0 is always `end`. (exactness)
/// * If `start` and `end` are [finite], the values will always move in the direction from
/// `start` to `end` (monotonicity)
/// * If `self` is [finite] and `start == end`, the value at any point will always be
/// `start == end`. (consistency)
///
/// [finite]: #method.is_finite
#[must_use = "method returns a new number and does not mutate the original value"]
#[unstable(feature = "float_interpolation", issue = "86269")]
pub fn lerp(self, start: f64, end: f64) -> f64 {
// consistent
if start == end {
start

// exact/monotonic
} else {
self.mul_add(end, (-self).mul_add(start, start))
}
}

// Solaris/Illumos requires a wrapper around log, log2, and log10 functions
// because of their non-standard behavior (e.g., log(-n) returns -Inf instead
// of expected NaN).
Expand Down
55 changes: 55 additions & 0 deletions library/std/src/f64/tests.rs
Original file line number Diff line number Diff line change
Expand Up @@ -753,3 +753,58 @@ fn test_total_cmp() {
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::INFINITY));
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
}

#[test]
fn test_lerp_exact() {
// simple values
assert_eq!(f64::lerp(0.0, 2.0, 4.0), 2.0);
assert_eq!(f64::lerp(1.0, 2.0, 4.0), 4.0);

// boundary values
assert_eq!(f64::lerp(0.0, f64::MIN, f64::MAX), f64::MIN);
assert_eq!(f64::lerp(1.0, f64::MIN, f64::MAX), f64::MAX);
}

#[test]
fn test_lerp_consistent() {
assert_eq!(f64::lerp(f64::MAX, f64::MIN, f64::MIN), f64::MIN);
assert_eq!(f64::lerp(f64::MIN, f64::MAX, f64::MAX), f64::MAX);

// as long as t is finite, a/b can be infinite
assert_eq!(f64::lerp(f64::MAX, f64::NEG_INFINITY, f64::NEG_INFINITY), f64::NEG_INFINITY);
assert_eq!(f64::lerp(f64::MIN, f64::INFINITY, f64::INFINITY), f64::INFINITY);
}

#[test]
fn test_lerp_nan_infinite() {
// non-finite t is not NaN if a/b different
assert!(!f64::lerp(f64::INFINITY, f64::MIN, f64::MAX).is_nan());
assert!(!f64::lerp(f64::NEG_INFINITY, f64::MIN, f64::MAX).is_nan());
}

#[test]
fn test_lerp_values() {
// just a few basic values
assert_eq!(f64::lerp(0.25, 1.0, 2.0), 1.25);
assert_eq!(f64::lerp(0.50, 1.0, 2.0), 1.50);
assert_eq!(f64::lerp(0.75, 1.0, 2.0), 1.75);
}

#[test]
fn test_lerp_monotonic() {
// near 0
let below_zero = f64::lerp(-f64::EPSILON, f64::MIN, f64::MAX);
let zero = f64::lerp(0.0, f64::MIN, f64::MAX);
let above_zero = f64::lerp(f64::EPSILON, f64::MIN, f64::MAX);
assert!(below_zero <= zero);
assert!(zero <= above_zero);
assert!(below_zero <= above_zero);

// near 1
let below_one = f64::lerp(1.0 - f64::EPSILON, f64::MIN, f64::MAX);
let one = f64::lerp(1.0, f64::MIN, f64::MAX);
let above_one = f64::lerp(1.0 + f64::EPSILON, f64::MIN, f64::MAX);
assert!(below_one <= one);
assert!(one <= above_one);
assert!(below_one <= above_one);
}
8 changes: 7 additions & 1 deletion library/std/src/io/buffered/bufreader.rs
Original file line number Diff line number Diff line change
Expand Up @@ -438,7 +438,13 @@ impl<R: Seek> Seek for BufReader<R> {
}

impl<T> SizeHint for BufReader<T> {
#[inline]
fn lower_bound(&self) -> usize {
self.buffer().len()
SizeHint::lower_bound(self.get_ref()) + self.buffer().len()
}

#[inline]
fn upper_bound(&self) -> Option<usize> {
SizeHint::upper_bound(self.get_ref()).and_then(|up| self.buffer().len().checked_add(up))
}
}
58 changes: 57 additions & 1 deletion library/std/src/io/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -252,6 +252,7 @@
mod tests;

use crate::cmp;
use crate::convert::TryInto;
use crate::fmt;
use crate::mem::replace;
use crate::ops::{Deref, DerefMut};
Expand Down Expand Up @@ -2342,13 +2343,15 @@ impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
}

impl<T, U> SizeHint for Chain<T, U> {
#[inline]
fn lower_bound(&self) -> usize {
SizeHint::lower_bound(&self.first) + SizeHint::lower_bound(&self.second)
}

#[inline]
fn upper_bound(&self) -> Option<usize> {
match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
(Some(first), Some(second)) => Some(first + second),
(Some(first), Some(second)) => first.checked_add(second),
_ => None,
}
}
Expand Down Expand Up @@ -2553,6 +2556,21 @@ impl<T: BufRead> BufRead for Take<T> {
}
}

impl<T> SizeHint for Take<T> {
#[inline]
fn lower_bound(&self) -> usize {
cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
}

#[inline]
fn upper_bound(&self) -> Option<usize> {
match SizeHint::upper_bound(&self.inner) {
Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
None => self.limit.try_into().ok(),
}
}
}

/// An iterator over `u8` values of a reader.
///
/// This struct is generally created by calling [`bytes`] on a reader.
Expand Down Expand Up @@ -2597,15 +2615,53 @@ trait SizeHint {
}

impl<T> SizeHint for T {
#[inline]
default fn lower_bound(&self) -> usize {
0
}

#[inline]
default fn upper_bound(&self) -> Option<usize> {
None
}
}

impl<T> SizeHint for &mut T {
#[inline]
fn lower_bound(&self) -> usize {
SizeHint::lower_bound(*self)
}

#[inline]
fn upper_bound(&self) -> Option<usize> {
SizeHint::upper_bound(*self)
}
}

impl<T> SizeHint for Box<T> {
#[inline]
fn lower_bound(&self) -> usize {
SizeHint::lower_bound(&**self)
}

#[inline]
fn upper_bound(&self) -> Option<usize> {
SizeHint::upper_bound(&**self)
}
}

impl SizeHint for &[u8] {
#[inline]
fn lower_bound(&self) -> usize {
self.len()
}

#[inline]
fn upper_bound(&self) -> Option<usize> {
Some(self.len())
}
}

/// An iterator over the contents of an instance of `BufRead` split on a
/// particular byte.
///
Expand Down
Loading