Skip to content

Bump portable-simd to shadow Ord #94899

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Mar 13, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion library/core/src/slice/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3536,7 +3536,7 @@ impl<T> [T] {
/// suffix.iter().copied().sum(),
/// ]);
/// let sums = middle.iter().copied().fold(sums, f32x4::add);
/// sums.horizontal_sum()
/// sums.reduce_sum()
/// }
///
/// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
Expand Down
4 changes: 2 additions & 2 deletions library/portable-simd/beginners-guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ SIMD has a few special vocabulary terms you should know:

* **Vertical:** When an operation is "vertical", each lane processes individually without regard to the other lanes in the same vector. For example, a "vertical add" between two vectors would add lane 0 in `a` with lane 0 in `b`, with the total in lane 0 of `out`, and then the same thing for lanes 1, 2, etc. Most SIMD operations are vertical operations, so if your problem is a vertical problem then you can probably solve it with SIMD.

* **Horizontal:** When an operation is "horizontal", the lanes within a single vector interact in some way. A "horizontal add" might add up lane 0 of `a` with lane 1 of `a`, with the total in lane 0 of `out`.
* **Reducing/Reduce:** When an operation is "reducing" (functions named `reduce_*`), the lanes within a single vector are merged using some operation such as addition, returning the merged value as a scalar. For instance, a reducing add would return the sum of all the lanes' values.

* **Target Feature:** Rust calls a CPU architecture extension a `target_feature`. Proper SIMD requires various CPU extensions to be enabled (details below). Don't confuse this with `feature`, which is a Cargo crate concept.

Expand Down Expand Up @@ -83,4 +83,4 @@ Fortunately, most SIMD types have a fairly predictable size. `i32x4` is bit-equi
However, this is not the same as alignment. Computer architectures generally prefer aligned accesses, especially when moving data between memory and vector registers, and while some support specialized operations that can bend the rules to help with this, unaligned access is still typically slow, or even undefined behavior. In addition, different architectures can require different alignments when interacting with their native SIMD types. For this reason, any `#[repr(simd)]` type has a non-portable alignment. If it is necessary to directly interact with the alignment of these types, it should be via [`mem::align_of`].

[`mem::transmute`]: https://doc.rust-lang.org/core/mem/fn.transmute.html
[`mem::align_of`]: https://doc.rust-lang.org/core/mem/fn.align_of.html
[`mem::align_of`]: https://doc.rust-lang.org/core/mem/fn.align_of.html
2 changes: 1 addition & 1 deletion library/portable-simd/crates/core_simd/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ categories = ["hardware-support", "no-std"]
license = "MIT OR Apache-2.0"

[features]
default = ["std", "generic_const_exprs"]
default = []
std = []
generic_const_exprs = []

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -233,7 +233,7 @@ pub fn simd_inv4x4(m: Matrix4x4) -> Option<Matrix4x4> {
let det = det.rotate_lanes_right::<2>() + det;
let det = det.reverse().rotate_lanes_right::<2>() + det;

if det.horizontal_sum() == 0. {
if det.reduce_sum() == 0. {
return None;
}
// calculate the reciprocal
Expand Down
8 changes: 4 additions & 4 deletions library/portable-simd/crates/core_simd/examples/nbody.rs
Original file line number Diff line number Diff line change
Expand Up @@ -107,10 +107,10 @@ mod nbody {
let mut e = 0.;
for i in 0..N_BODIES {
let bi = &bodies[i];
e += bi.mass * (bi.v * bi.v).horizontal_sum() * 0.5;
e += bi.mass * (bi.v * bi.v).reduce_sum() * 0.5;
for bj in bodies.iter().take(N_BODIES).skip(i + 1) {
let dx = bi.x - bj.x;
e -= bi.mass * bj.mass / (dx * dx).horizontal_sum().sqrt()
e -= bi.mass * bj.mass / (dx * dx).reduce_sum().sqrt()
}
}
e
Expand All @@ -134,8 +134,8 @@ mod nbody {
let mut mag = [0.0; N];
for i in (0..N).step_by(2) {
let d2s = f64x2::from_array([
(r[i] * r[i]).horizontal_sum(),
(r[i + 1] * r[i + 1]).horizontal_sum(),
(r[i] * r[i]).reduce_sum(),
(r[i + 1] * r[i + 1]).reduce_sum(),
]);
let dmags = f64x2::splat(dt) / (d2s * d2s.sqrt());
mag[i] = dmags[0];
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ fn mult_av(v: &[f64], out: &mut [f64]) {
sum += b / a;
j += 2
}
*out = sum.horizontal_sum();
*out = sum.reduce_sum();
}
}

Expand All @@ -38,7 +38,7 @@ fn mult_atv(v: &[f64], out: &mut [f64]) {
sum += b / a;
j += 2
}
*out = sum.horizontal_sum();
*out = sum.reduce_sum();
}
}

Expand Down
52 changes: 52 additions & 0 deletions library/portable-simd/crates/core_simd/src/comparisons.rs
Original file line number Diff line number Diff line change
Expand Up @@ -66,3 +66,55 @@ where
unsafe { Mask::from_int_unchecked(intrinsics::simd_ge(self, other)) }
}
}

macro_rules! impl_ord_methods_vector {
{ $type:ty } => {
impl<const LANES: usize> Simd<$type, LANES>
where
LaneCount<LANES>: SupportedLaneCount,
{
/// Returns the lane-wise minimum with `other`.
#[must_use = "method returns a new vector and does not mutate the original value"]
#[inline]
pub fn min(self, other: Self) -> Self {
self.lanes_gt(other).select(other, self)
}

/// Returns the lane-wise maximum with `other`.
#[must_use = "method returns a new vector and does not mutate the original value"]
#[inline]
pub fn max(self, other: Self) -> Self {
self.lanes_lt(other).select(other, self)
}

/// Restrict each lane to a certain interval.
///
/// For each lane, returns `max` if `self` is greater than `max`, and `min` if `self` is
/// less than `min`. Otherwise returns `self`.
///
/// # Panics
///
/// Panics if `min > max` on any lane.
#[must_use = "method returns a new vector and does not mutate the original value"]
#[inline]
pub fn clamp(self, min: Self, max: Self) -> Self {
assert!(
min.lanes_le(max).all(),
"each lane in `min` must be less than or equal to the corresponding lane in `max`",
);
self.max(min).min(max)
}
}
}
}

impl_ord_methods_vector!(i8);
impl_ord_methods_vector!(i16);
impl_ord_methods_vector!(i32);
impl_ord_methods_vector!(i64);
impl_ord_methods_vector!(isize);
impl_ord_methods_vector!(u8);
impl_ord_methods_vector!(u16);
impl_ord_methods_vector!(u32);
impl_ord_methods_vector!(u64);
impl_ord_methods_vector!(usize);
9 changes: 8 additions & 1 deletion library/portable-simd/crates/core_simd/src/intrinsics.rs
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@
//!
//! Unless stated otherwise, all intrinsics for binary operations require SIMD vectors of equal types and lengths.


// These intrinsics aren't linked directly from LLVM and are mostly undocumented, however they are
// mostly lowered to the matching LLVM instructions by the compiler in a fairly straightforward manner.
// The associated LLVM instruction or intrinsic is documented alongside each Rust intrinsic function.
Expand Down Expand Up @@ -130,6 +129,14 @@ extern "platform-intrinsic" {
pub(crate) fn simd_reduce_xor<T, U>(x: T) -> U;

// truncate integer vector to bitmask
// `fn simd_bitmask(vector) -> unsigned integer` takes a vector of integers and
// returns either an unsigned integer or array of `u8`.
// Every element in the vector becomes a single bit in the returned bitmask.
// If the vector has less than 8 lanes, a u8 is returned with zeroed trailing bits.
// The bit order of the result depends on the byte endianness. LSB-first for little
// endian and MSB-first for big endian.
//
// UB if called on a vector with values other than 0 and -1.
#[allow(unused)]
pub(crate) fn simd_bitmask<T, U>(x: T) -> U;

Expand Down
3 changes: 1 addition & 2 deletions library/portable-simd/crates/core_simd/src/lib.rs
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
#![cfg_attr(not(feature = "std"), no_std)]
#![no_std]
#![feature(
const_fn_trait_bound,
convert_float_to_int,
decl_macro,
intra_doc_pointers,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,9 @@ macro_rules! impl_integer_intrinsic {
}

impl_integer_intrinsic! {
unsafe impl ToBitMask<BitMask=u8> for Mask<_, 1>
unsafe impl ToBitMask<BitMask=u8> for Mask<_, 2>
unsafe impl ToBitMask<BitMask=u8> for Mask<_, 4>
unsafe impl ToBitMask<BitMask=u8> for Mask<_, 8>
unsafe impl ToBitMask<BitMask=u16> for Mask<_, 16>
unsafe impl ToBitMask<BitMask=u32> for Mask<_, 32>
Expand Down
21 changes: 7 additions & 14 deletions library/portable-simd/crates/core_simd/src/math.rs
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,7 @@ macro_rules! impl_uint_arith {
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "std")] use core_simd::Simd;
/// # #[cfg(not(feature = "std"))] use core::simd::Simd;
/// # use core::simd::Simd;
#[doc = concat!("# use core::", stringify!($ty), "::MAX;")]
/// let x = Simd::from_array([2, 1, 0, MAX]);
/// let max = Simd::splat(MAX);
Expand All @@ -31,8 +30,7 @@ macro_rules! impl_uint_arith {
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "std")] use core_simd::Simd;
/// # #[cfg(not(feature = "std"))] use core::simd::Simd;
/// # use core::simd::Simd;
#[doc = concat!("# use core::", stringify!($ty), "::MAX;")]
/// let x = Simd::from_array([2, 1, 0, MAX]);
/// let max = Simd::splat(MAX);
Expand All @@ -58,8 +56,7 @@ macro_rules! impl_int_arith {
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "std")] use core_simd::Simd;
/// # #[cfg(not(feature = "std"))] use core::simd::Simd;
/// # use core::simd::Simd;
#[doc = concat!("# use core::", stringify!($ty), "::{MIN, MAX};")]
/// let x = Simd::from_array([MIN, 0, 1, MAX]);
/// let max = Simd::splat(MAX);
Expand All @@ -79,8 +76,7 @@ macro_rules! impl_int_arith {
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "std")] use core_simd::Simd;
/// # #[cfg(not(feature = "std"))] use core::simd::Simd;
/// # use core::simd::Simd;
#[doc = concat!("# use core::", stringify!($ty), "::{MIN, MAX};")]
/// let x = Simd::from_array([MIN, -2, -1, MAX]);
/// let max = Simd::splat(MAX);
Expand All @@ -100,8 +96,7 @@ macro_rules! impl_int_arith {
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "std")] use core_simd::Simd;
/// # #[cfg(not(feature = "std"))] use core::simd::Simd;
/// # use core::simd::Simd;
#[doc = concat!("# use core::", stringify!($ty), "::{MIN, MAX};")]
/// let xs = Simd::from_array([MIN, MIN +1, -5, 0]);
/// assert_eq!(xs.abs(), Simd::from_array([MIN, MAX, 5, 0]));
Expand All @@ -119,8 +114,7 @@ macro_rules! impl_int_arith {
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "std")] use core_simd::Simd;
/// # #[cfg(not(feature = "std"))] use core::simd::Simd;
/// # use core::simd::Simd;
#[doc = concat!("# use core::", stringify!($ty), "::{MIN, MAX};")]
/// let xs = Simd::from_array([MIN, -2, 0, 3]);
/// let unsat = xs.abs();
Expand All @@ -142,8 +136,7 @@ macro_rules! impl_int_arith {
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "std")] use core_simd::Simd;
/// # #[cfg(not(feature = "std"))] use core::simd::Simd;
/// # use core::simd::Simd;
#[doc = concat!("# use core::", stringify!($ty), "::{MIN, MAX};")]
/// let x = Simd::from_array([MIN, -2, 3, MAX]);
/// let unsat = -x;
Expand Down
44 changes: 22 additions & 22 deletions library/portable-simd/crates/core_simd/src/reduction.rs
Original file line number Diff line number Diff line change
Expand Up @@ -11,30 +11,30 @@ macro_rules! impl_integer_reductions {
where
LaneCount<LANES>: SupportedLaneCount,
{
/// Horizontal wrapping add. Returns the sum of the lanes of the vector, with wrapping addition.
/// Reducing wrapping add. Returns the sum of the lanes of the vector, with wrapping addition.
#[inline]
pub fn horizontal_sum(self) -> $scalar {
pub fn reduce_sum(self) -> $scalar {
// Safety: `self` is an integer vector
unsafe { simd_reduce_add_ordered(self, 0) }
}

/// Horizontal wrapping multiply. Returns the product of the lanes of the vector, with wrapping multiplication.
/// Reducing wrapping multiply. Returns the product of the lanes of the vector, with wrapping multiplication.
#[inline]
pub fn horizontal_product(self) -> $scalar {
pub fn reduce_product(self) -> $scalar {
// Safety: `self` is an integer vector
unsafe { simd_reduce_mul_ordered(self, 1) }
}

/// Horizontal maximum. Returns the maximum lane in the vector.
/// Reducing maximum. Returns the maximum lane in the vector.
#[inline]
pub fn horizontal_max(self) -> $scalar {
pub fn reduce_max(self) -> $scalar {
// Safety: `self` is an integer vector
unsafe { simd_reduce_max(self) }
}

/// Horizontal minimum. Returns the minimum lane in the vector.
/// Reducing minimum. Returns the minimum lane in the vector.
#[inline]
pub fn horizontal_min(self) -> $scalar {
pub fn reduce_min(self) -> $scalar {
// Safety: `self` is an integer vector
unsafe { simd_reduce_min(self) }
}
Expand All @@ -60,9 +60,9 @@ macro_rules! impl_float_reductions {
LaneCount<LANES>: SupportedLaneCount,
{

/// Horizontal add. Returns the sum of the lanes of the vector.
/// Reducing add. Returns the sum of the lanes of the vector.
#[inline]
pub fn horizontal_sum(self) -> $scalar {
pub fn reduce_sum(self) -> $scalar {
// LLVM sum is inaccurate on i586
if cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) {
self.as_array().iter().sum()
Expand All @@ -72,9 +72,9 @@ macro_rules! impl_float_reductions {
}
}

/// Horizontal multiply. Returns the product of the lanes of the vector.
/// Reducing multiply. Returns the product of the lanes of the vector.
#[inline]
pub fn horizontal_product(self) -> $scalar {
pub fn reduce_product(self) -> $scalar {
// LLVM product is inaccurate on i586
if cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) {
self.as_array().iter().product()
Expand All @@ -84,22 +84,22 @@ macro_rules! impl_float_reductions {
}
}

/// Horizontal maximum. Returns the maximum lane in the vector.
/// Reducing maximum. Returns the maximum lane in the vector.
///
/// Returns values based on equality, so a vector containing both `0.` and `-0.` may
/// return either. This function will not return `NaN` unless all lanes are `NaN`.
#[inline]
pub fn horizontal_max(self) -> $scalar {
pub fn reduce_max(self) -> $scalar {
// Safety: `self` is a float vector
unsafe { simd_reduce_max(self) }
}

/// Horizontal minimum. Returns the minimum lane in the vector.
/// Reducing minimum. Returns the minimum lane in the vector.
///
/// Returns values based on equality, so a vector containing both `0.` and `-0.` may
/// return either. This function will not return `NaN` unless all lanes are `NaN`.
#[inline]
pub fn horizontal_min(self) -> $scalar {
pub fn reduce_min(self) -> $scalar {
// Safety: `self` is a float vector
unsafe { simd_reduce_min(self) }
}
Expand All @@ -116,10 +116,10 @@ where
T: SimdElement + BitAnd<T, Output = T>,
LaneCount<LANES>: SupportedLaneCount,
{
/// Horizontal bitwise "and". Returns the cumulative bitwise "and" across the lanes of
/// Reducing bitwise "and". Returns the cumulative bitwise "and" across the lanes of
/// the vector.
#[inline]
pub fn horizontal_and(self) -> T {
pub fn reduce_and(self) -> T {
unsafe { simd_reduce_and(self) }
}
}
Expand All @@ -130,10 +130,10 @@ where
T: SimdElement + BitOr<T, Output = T>,
LaneCount<LANES>: SupportedLaneCount,
{
/// Horizontal bitwise "or". Returns the cumulative bitwise "or" across the lanes of
/// Reducing bitwise "or". Returns the cumulative bitwise "or" across the lanes of
/// the vector.
#[inline]
pub fn horizontal_or(self) -> T {
pub fn reduce_or(self) -> T {
unsafe { simd_reduce_or(self) }
}
}
Expand All @@ -144,10 +144,10 @@ where
T: SimdElement + BitXor<T, Output = T>,
LaneCount<LANES>: SupportedLaneCount,
{
/// Horizontal bitwise "xor". Returns the cumulative bitwise "xor" across the lanes of
/// Reducing bitwise "xor". Returns the cumulative bitwise "xor" across the lanes of
/// the vector.
#[inline]
pub fn horizontal_xor(self) -> T {
pub fn reduce_xor(self) -> T {
unsafe { simd_reduce_xor(self) }
}
}
Loading