Skip to content

Allowing rdims or cdims to be empty array. #43

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 10 additions & 3 deletions pyttb/tenmat.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,12 +113,19 @@ def from_tensor_type(cls, source, rdims=None, cdims=None, cdims_cyclic=None):
elif rdims is None and cdims is not None:
rdims = np.setdiff1d(alldims, cdims)


dims = np.hstack([rdims, cdims])
# if rdims or cdims is empty, hstack will output an array of float not int
if rdims.size == 0:
dims = cdims.copy()
elif cdims.size == 0:
dims = rdims.copy()
else:
dims = np.hstack([rdims, cdims])
if not len(dims) == n or not (alldims == np.sort(dims)).all():
assert False, 'Incorrect specification of dimensions, the sorted concatenation of rdims and cdims must be range(source.ndims).'

data = np.reshape(source.permute(dims).data, (np.prod(np.array(tshape)[rdims]), np.prod(np.array(tshape)[cdims])), order='F')
rprod = 1 if rdims.size == 0 else np.prod(np.array(tshape)[rdims])
cprod = 1 if cdims.size == 0 else np.prod(np.array(tshape)[cdims])
data = np.reshape(source.permute(dims).data, (rprod, cprod), order='F')

# Create tenmat
tenmatInstance = cls()
Expand Down
21 changes: 20 additions & 1 deletion tests/test_tenmat.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,14 @@ def sample_ndarray_2way():
params = {'data':ndarrayInstance, 'shape':shape}
return params, ndarrayInstance

@pytest.fixture()
def sample_tensor_3way():
data = np.array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.])
shape = (2, 3, 2)
params = {'data':np.reshape(data, np.array(shape), order='F'), 'shape': shape}
tensorInstance = ttb.tensor().from_data(data, shape)
return params, tensorInstance

@pytest.fixture()
def sample_ndarray_4way():
shape = (2, 2, 2, 2)
Expand Down Expand Up @@ -184,8 +192,9 @@ def test_tenmat_initialization_from_data(sample_ndarray_1way, sample_ndarray_2wa
assert exc in str(excinfo)

@pytest.mark.indevelopment
def test_tenmat_initialization_from_tensor_type(sample_tenmat_4way, sample_tensor_4way):
def test_tenmat_initialization_from_tensor_type(sample_tenmat_4way, sample_tensor_3way, sample_tensor_4way):
(_, tensorInstance) = sample_tensor_4way
(_, tensorInstance3) = sample_tensor_3way
(params, tenmatInstance) = sample_tenmat_4way
tshape = params['tshape']
rdims = params['rdims']
Expand All @@ -208,6 +217,11 @@ def test_tenmat_initialization_from_tensor_type(sample_tenmat_4way, sample_tenso
assert tenmatInstance.shape == tenmatTensorRdims.shape
assert tenmatInstance.tshape == tenmatTensorRdims.tshape

# Constructor from tensor using empty rdims
tenmatTensorRdims = ttb.tenmat.from_tensor_type(tensorInstance3, rdims=np.array([]))
data = np.reshape(np.arange(1,13),(1,12))
assert (tenmatTensorRdims.data == data).all()

# Constructor from tensor using cdims only
tenmatTensorCdims = ttb.tenmat.from_tensor_type(tensorInstance, cdims=cdims)
assert (tenmatInstance.data == tenmatTensorCdims.data).all()
Expand All @@ -216,6 +230,11 @@ def test_tenmat_initialization_from_tensor_type(sample_tenmat_4way, sample_tenso
assert tenmatInstance.shape == tenmatTensorCdims.shape
assert tenmatInstance.tshape == tenmatTensorCdims.tshape

# Constructor from tensor using empty cdims
tenmatTensorCdims = ttb.tenmat.from_tensor_type(tensorInstance3, cdims=np.array([]))
data = np.reshape(np.arange(1,13),(12,1))
assert (tenmatTensorCdims.data == data).all()

# Constructor from tensor using rdims and cdims
tenmatTensorRdimsCdims = ttb.tenmat.from_tensor_type(tensorInstance, rdims=rdims, cdims=cdims)
assert (tenmatInstance.data == tenmatTensorRdimsCdims.data).all()
Expand Down