Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions data/base_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,8 +95,8 @@ def get_affine_mat(opt, size):
affine_inv = np.linalg.inv(affine)
return affine, affine_inv, flip

def apply_img_affine(img, affine_inv, method=Image.BICUBIC):
return img.transform(img.size, Image.AFFINE, data=affine_inv.flatten()[:6], resample=Image.BICUBIC)
def apply_img_affine(img, affine_inv, method=Image.Resampling.BICUBIC):
return img.transform(img.size, Image.AFFINE, data=affine_inv.flatten()[:6], resample=Image.Resampling.BICUBIC)

def apply_lm_affine(landmark, affine, flip, size):
_, h = size
Expand Down
4 changes: 2 additions & 2 deletions util/preprocess.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,11 +142,11 @@ def resize_n_crop_img(img, lm, t, s, target_size=224., mask=None):
up = (h/2 - target_size/2 + float((h0/2 - t[1])*s)).astype(np.int32)
below = up + target_size

img = img.resize((w, h), resample=Image.BICUBIC)
img = img.resize((w, h), resample=Image.Resampling.BICUBIC)
img = img.crop((left, up, right, below))

if mask is not None:
mask = mask.resize((w, h), resample=Image.BICUBIC)
mask = mask.resize((w, h), resample=Image.Resampling.BICUBIC)
mask = mask.crop((left, up, right, below))

lm = np.stack([lm[:, 0] - t[0] + w0/2, lm[:, 1] -
Expand Down
8 changes: 4 additions & 4 deletions util/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,9 +107,9 @@ def save_image(image_numpy, image_path, aspect_ratio=1.0):
if aspect_ratio is None:
pass
elif aspect_ratio > 1.0:
image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.Resampling.BICUBIC)
elif aspect_ratio < 1.0:
image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.Resampling.BICUBIC)
image_pil.save(image_path)


Expand Down Expand Up @@ -166,13 +166,13 @@ def correct_resize_label(t, size):
return torch.stack(resized, dim=0).to(device)


def correct_resize(t, size, mode=Image.BICUBIC):
def correct_resize(t, size, mode=Image.Resampling.BICUBIC):
device = t.device
t = t.detach().cpu()
resized = []
for i in range(t.size(0)):
one_t = t[i:i + 1]
one_image = Image.fromarray(tensor2im(one_t)).resize(size, Image.BICUBIC)
one_image = Image.fromarray(tensor2im(one_t)).resize(size, Image.Resampling.BICUBIC)
resized_t = torchvision.transforms.functional.to_tensor(one_image) * 2 - 1.0
resized.append(resized_t)
return torch.stack(resized, dim=0).to(device)
Expand Down