Skip to content

RequirementMachine: Remove old minimal conformances algorithm #59900

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
118 changes: 6 additions & 112 deletions lib/AST/RequirementMachine/KnuthBendix.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -157,66 +157,8 @@ RewriteSystem::computeCriticalPair(ArrayRef<Symbol>::const_iterator from,
return false;
}

// If X == TUW for some W, then the critical pair is (TUW, TYV),
// and we have
// - lhs == (TUV => TUW)
// - rhs == (U => Y).
//
// We explicitly apply the rewrite step (Y => U) to the beginning of the
// rewrite path, transforming the critical pair to (TYW, TYV).
//
// In particular, if V == W.[P] for some protocol P, then we in fact have
// a property rule and a same-type rule:
//
// - lhs == (TUW.[P] => TUW)
// - rhs == (U => Y)
//
// Without this hack, the critical pair would be:
//
// (TUW => TYW.[P])
//
// With this hack, the critical pair becomes:
//
// (TYW.[P] => TYW)
//
// This ensures that the newly-added rule is itself a property rule;
// otherwise, this would only be the case if addRule() reduced TUW
// into TYW without immediately reducing some subterm of TUW first.
//
// While completion will eventually simplify all such rules down into
// property rules, their existence in the first place breaks subtle
// invariants in the minimal conformances algorithm, which expects
// homotopy generators describing redundant protocol conformance rules
// to have a certain structure.
if (t.size() + rhs.getLHS().size() <= x.size() &&
std::equal(rhs.getLHS().begin(),
rhs.getLHS().end(),
x.begin() + t.size())) {
// We have a path from TUW to TYV. Invert to get a path from TYV to
// TUW.
path.invert();

// Compute the term W.
MutableTerm w(x.begin() + t.size() + rhs.getLHS().size(), x.end());

// Now add a rewrite step T.(U => Y).W to get a path from TYV to
// TYW.
path.add(RewriteStep::forRewriteRule(/*startOffset=*/t.size(),
/*endOffset=*/w.size(),
getRuleID(rhs),
/*inverse=*/false));

// Compute the term TYW.
MutableTerm tyw(t);
tyw.append(rhs.getRHS());
tyw.append(w);

// Add the pair (TYV, TYW).
pairs.emplace_back(tyv, tyw, path);
} else {
// Add the pair (X, TYV).
pairs.emplace_back(x, tyv, path);
}
// Add the pair (X, TYV).
pairs.emplace_back(x, tyv, path);
} else {
// lhs == TU -> X, rhs == UV -> Y.

Expand Down Expand Up @@ -270,56 +212,8 @@ RewriteSystem::computeCriticalPair(ArrayRef<Symbol>::const_iterator from,
return false;
}

// If Y == UW for some W, then the critical pair is (XV, TUW),
// and we have
// - lhs == (TU -> X)
// - rhs == (UV -> UW).
//
// We explicitly apply the rewrite step (TU => X) to the rewrite path,
// transforming the critical pair to (XV, XW).
//
// In particular, if T == X, U == [P] for some protocol P, and
// V == W.[p] for some property symbol p, then we in fact have a pair
// of property rules:
//
// - lhs == (T.[P] => T)
// - rhs == ([P].W.[p] => [P].W)
//
// Without this hack, the critical pair would be:
//
// (T.W.[p] => T.[P].W)
//
// With this hack, the critical pair becomes:
//
// (T.W.[p] => T.W)
//
// This ensures that the newly-added rule is itself a property rule;
// otherwise, this would only be the case if addRule() reduced T.[P].W
// into T.W without immediately reducing some subterm of T first.
//
// While completion will eventually simplify all such rules down into
// property rules, their existence in the first place breaks subtle
// invariants in the minimal conformances algorithm, which expects
// homotopy generators describing redundant protocol conformance rules
// to have a certain structure.
if (lhs.getLHS().size() <= ty.size() &&
std::equal(lhs.getLHS().begin(),
lhs.getLHS().end(),
ty.begin())) {
unsigned endOffset = ty.size() - lhs.getLHS().size();
path.add(RewriteStep::forRewriteRule(/*startOffset=*/0,
endOffset,
getRuleID(lhs),
/*inverse=*/false));

// Compute the term XW.
MutableTerm xw(lhs.getRHS());
xw.append(ty.end() - endOffset, ty.end());

pairs.emplace_back(xv, xw, path);
} else {
pairs.emplace_back(xv, ty, path);
}
// Add the pair (XV, TY).
pairs.emplace_back(xv, ty, path);
}

return true;
Expand Down Expand Up @@ -347,7 +241,7 @@ RewriteSystem::computeConfluentCompletion(unsigned maxRuleCount,
assert(!Minimized);
assert(!Frozen);

// Complete might already be set, if we're re-running completion after
// 'Complete' might already be set, if we're re-running completion after
// adding new rules in the property map's concrete type unification procedure.
Complete = 1;

Expand All @@ -359,7 +253,7 @@ RewriteSystem::computeConfluentCompletion(unsigned maxRuleCount,
do {
ruleCount = Rules.size();

// For every rule, looking for other rules that overlap with this rule.
// For every rule, look for other rules that overlap with this rule.
for (unsigned i = FirstLocalRule, e = Rules.size(); i < e; ++i) {
const auto &lhs = getRule(i);
if (lhs.isLHSSimplified() ||
Expand Down
Loading