-
-
Notifications
You must be signed in to change notification settings - Fork 9k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
Collecting environment information...
==============================
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : 14.0.0-1ubuntu1.1
CMake version : version 4.0.2
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.9.0.dev20250702+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.10.12 (main, May 27 2025, 17:12:29) [GCC 11.4.0] (64-bit runtime)
Python platform : Linux-5.15.0-105-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.8.93
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: GRID A100-40C
GPU 1: GRID A100-40C
GPU 2: GRID A100-40C
Nvidia driver version : 570.133.20
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.5
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 45 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7282 16-Core Processor
CPU family: 23
Model: 49
Thread(s) per core: 1
Core(s) per socket: 8
Socket(s): 4
Stepping: 0
BogoMIPS: 5599.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero wbnoinvd arat umip rdpid overflow_recov succor
Hypervisor vendor: VMware
Virtualization type: full
L1d cache: 1 MiB (32 instances)
L1i cache: 1 MiB (32 instances)
L2 cache: 16 MiB (32 instances)
L3 cache: 64 MiB (4 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-15
NUMA node1 CPU(s): 16-31
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled
Vulnerability Spec rstack overflow: Mitigation; SMT disabled
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] mypy-extensions==1.0.0
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvshmem-cu12==3.2.5
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] onnxruntime==1.22.0
[pip3] pynvml==12.0.0
[pip3] pytorch-triton==3.3.1+gitc8757738
[pip3] pyzmq==27.0.0
[pip3] sentence-transformers==3.4.1
[pip3] torch==2.9.0.dev20250702+cu128
[pip3] torchaudio==2.8.0.dev20250702+cu128
[pip3] torchvision==0.24.0.dev20250702+cu128
[pip3] transformers==4.53.0
[pip3] triton==3.3.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.1.dev7393+gb1c1fe3.d20250703 (git sha: b1c1fe3, date: 20250703)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PIX PIX 0-31 0-1 N/A
GPU1 PIX X PIX 0-31 0-1 N/A
GPU2 PIX PIX X 0-31 0-1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
LD_LIBRARY_PATH=:/usr/local/cuda-12.8/lib64
OMP_NUM_THREADS=1
CUDA_HOME=/usr/local/cuda-12.8/
CUDA_HOME=/usr/local/cuda-12.8/
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
Since commit 5d6d1ad and PR #18437
Using Dual Chunked Attention with Qwen 1M makes the first prompt request hangs and crashes the vllm serve
server.
INFO 07-04 11:32:50 [engine.py:317] Added request chatcmpl-0ff807c9e8744e56b2e69fb3687499a6.
ERROR 07-04 11:33:12 [client.py:307] RuntimeError('Engine process (pid 3607156) died.')
ERROR 07-04 11:33:12 [client.py:307] NoneType: None
INFO: Shutting down
INFO: Waiting for connections to close. (CTRL+C to force quit)
ERROR 07-04 11:33:15 [serving_chat.py:897] Error in chat completion stream generator.
ERROR 07-04 11:33:15 [serving_chat.py:897] Traceback (most recent call last):
ERROR 07-04 11:33:15 [serving_chat.py:897] File "/home/pierre/idextend/vllm_repo/vllm/entrypoints/openai/serving_chat.py", line 481, in chat_completion_stream_generator
ERROR 07-04 11:33:15 [serving_chat.py:897] async for res in result_generator:
ERROR 07-04 11:33:15 [serving_chat.py:897] File "/home/pierre/idextend/vllm_repo/vllm/engine/multiprocessing/client.py", line 671, in _process_request
ERROR 07-04 11:33:15 [serving_chat.py:897] raise request_output
ERROR 07-04 11:33:15 [serving_chat.py:897] vllm.engine.multiprocessing.MQEngineDeadError: Engine loop is not running. Inspect the stacktrace to find the original error: RuntimeError('Engine process (pid 3607156) died.').
INFO: Waiting for application shutdown.
INFO: Application shutdown complete.
INFO: Finished server process [3607080]
VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 CUDA_VISIBLE_DEVICES=1,2 VLLM_ATTENTION_BACKEND=DUAL_CHUNK_FLASH_ATTN vllm serve Qwen/Qwen2.5-7B-Instruct-1M --max-model-len 140000 --max-num-seqs 1 --port 2483 --enforce-eager --gpu-memory-utilization 0.65 --enable-server-load-tracking --enable-prefix-caching
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working