Skip to content

Support loading transformers models with named parameters #16868

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Apr 28, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions vllm/model_executor/models/transformers.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,6 +166,9 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
# Initialize buffers (e.g. rotary embedding inverse frequency)
self.init_buffers(self.model)

# Initialize parameters
self.init_parameters(self.model)

# Move remaining meta tensors to device (should happen last)
self.meta_to_empty(self.model)

Expand Down Expand Up @@ -298,6 +301,25 @@ def init_buffers(self, module: nn.Module):
for child in module.children():
self.init_buffers(child)

def init_parameters(self, module: nn.Module):
"""
If a `parameter` is on the `meta` device, then its parent
`module` is the original module created by:

```python
with torch.device("meta"):
self.model: PreTrainedModel = AutoModel.from_config(...)
```
"""
for name, param in module.named_parameters(recurse=False):
if param.device == torch.device("meta"):
new_param = nn.Parameter(
torch.empty_like(param.data,
device=self.device_config.device))
setattr(module, name, new_param)
for child in module.children():
Comment on lines +319 to +320
Copy link
Preview

Copilot AI Apr 18, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Consider using module.register_parameter(name, new_param) instead of setattr(module, name, new_param) to ensure the parameter is correctly registered in the module's parameter dictionary.

Suggested change
setattr(module, name, new_param)
for child in module.children():
module.register_parameter(name, new_param)

Copilot uses AI. Check for mistakes.

self.init_parameters(child)

def meta_to_empty(self, module: nn.Module):
tensors = list(chain(module.buffers(), module.parameters()))
if tensors and all(t.device == torch.device("meta") for t in tensors):
Expand Down Expand Up @@ -342,6 +364,7 @@ def forward(
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters())

loaded_params = set[str]()
for name, loaded_weight in weights:
# Use "model" instead of base_model_prefix because
Expand Down