Skip to content

An unsupervised machine learning model using HDBSCAN to classify wildfires in Europe (2016–2024) based on location, seasonality, burned area, and vegetation type. It reveals patterns and fire typologies to support risk analysis and management.

License

Notifications You must be signed in to change notification settings

vrieraj/ML_EFFIS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Wildfire Clustering in Europe

Clusterización de incendios forestales en Europa


Description

An unsupervised machine learning model that classifies wildfires in Europe (2016–2024) based on location, seasonality, burned area, and vegetation type. Implemented in a reproducible pipeline using EFFIS data and HDBSCAN to identify wildfire patterns and typologies.

Modelo de machine learning no supervisado que clasifica incendios forestales en Europa (2016–2024) según ubicación, estacionalidad, superficie quemada y tipo de vegetación. Implementado en un pipeline reproducible que usa datos de EFFIS y HDBSCAN para identificar patrones y tipologías de incendios.


Main Dependencies

  • Python 3.10+
  • pandas, geopandas
  • hdbscan
  • scikit-learn
  • joblib

Installation

  1. Clone repository:

    git clone https://github.com/tu_usuario/ML_EFFIS.git
    cd ML_EFFIS
    
  2. (Optional) Virtual environment and dependencies::

    python -m venv venv
    source venv/bin/activate  # En Windows: venv\Scripts\activate
    pip install -r requirements.txt
    

Quick Usage

A pretrained version of the model is available at:

/src/models/EFFIS_SCAN.joblib

You can load it directly for testing without running the entire pipeline from scratch:

from joblib import load

# Load pretrained model
EFFIS_SCAN = load("src/models/EFFIS_SCAN.joblib")

# Modify key pipeline parameters with kw_args:
EFFIS_SCAN.set_params(Preprocess_shp__Filter_area__kw_args={'bbox': nuevo_bbox})                # Area of interest
EFFIS_SCAN.set_params(Filter_transform__Feature_select__kw_args={'columns': cols_to_filter})    # Dataset column filter
EFFIS_SCAN.set_params(Filter_transform__Area_filter__kw_args={'ha': new_area})                  # Minimum fire area to consider
EFFIS_SCAN.set_params(Filter_transform__One-Hot__kw_args={'features': new_features_list})       # Vegetation type variables

This allows easy reuse of the pipeline for new geographic areas, custom filters, or analysis configurations.

👉 To run the full project workflow, follow the steps described in main.ipynb (in Spanish).

Credits

Developed by por Víctor Riera
Source: European Forest Fire Information System (EFFIS)

About

An unsupervised machine learning model using HDBSCAN to classify wildfires in Europe (2016–2024) based on location, seasonality, burned area, and vegetation type. It reveals patterns and fire typologies to support risk analysis and management.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published