Skip to content

Add ICP support for 3d point clouds #465

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Apr 2, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 71 additions & 23 deletions SLAM/iterative_closest_point/iterative_closest_point.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
"""
Iterative Closest Point (ICP) SLAM example
author: Atsushi Sakai (@Atsushi_twi), Göktuğ Karakaşlı
author: Atsushi Sakai (@Atsushi_twi), Göktuğ Karakaşlı, Shamil Gemuev
"""

import math

# from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
import matplotlib.pyplot as plt
import numpy as np

Expand All @@ -19,8 +20,8 @@ def icp_matching(previous_points, current_points):
"""
Iterative Closest Point matching
- input
previous_points: 2D points in the previous frame
current_points: 2D points in the current frame
previous_points: 2D or 3D points in the previous frame
current_points: 2D or 3D points in the current frame
- output
R: Rotation matrix
T: Translation vector
Expand All @@ -31,19 +32,16 @@ def icp_matching(previous_points, current_points):
preError = np.inf
count = 0

if show_animation:
fig = plt.figure()
# if previous_points.shape[0] == 3:
# fig.add_subplot(111, projection='3d')

while dError >= EPS:
count += 1

if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(previous_points[0, :], previous_points[1, :], ".r")
plt.plot(current_points[0, :], current_points[1, :], ".b")
plt.plot(0.0, 0.0, "xr")
plt.axis("equal")
plot_points(previous_points, current_points, fig)
plt.pause(0.1)

indexes, error = nearest_neighbor_association(previous_points, current_points)
Expand All @@ -68,24 +66,20 @@ def icp_matching(previous_points, current_points):
print("Not Converge...", error, dError, count)
break

R = np.array(H[0:2, 0:2])
T = np.array(H[0:2, 2])
R = np.array(H[0:-1, 0:-1])
T = np.array(H[0:-1, -1])

return R, T


def update_homogeneous_matrix(Hin, R, T):

H = np.zeros((3, 3))

H[0, 0] = R[0, 0]
H[1, 0] = R[1, 0]
H[0, 1] = R[0, 1]
H[1, 1] = R[1, 1]
H[2, 2] = 1.0
r_size = R.shape[0]
H = np.zeros((r_size + 1, r_size + 1))

H[0, 2] = T[0]
H[1, 2] = T[1]
H[0:r_size, 0:r_size] = R
H[0:r_size, r_size] = T
H[r_size, r_size] = 1.0

if Hin is None:
return H
Expand Down Expand Up @@ -124,6 +118,28 @@ def svd_motion_estimation(previous_points, current_points):
return R, t


def plot_points(previous_points, current_points, figure):
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
# if previous_points.shape[0] == 3:
# plt.clf()
# axes = figure.add_subplot(111, projection='3d')
# axes.scatter(previous_points[0, :], previous_points[1, :],
# previous_points[2, :], c="r", marker=".")
# axes.scatter(current_points[0, :], current_points[1, :],
# current_points[2, :], c="b", marker=".")
# axes.scatter(0.0, 0.0, 0.0, c="r", marker="x")
# figure.canvas.draw()
# else:
plt.cla()
plt.plot(previous_points[0, :], previous_points[1, :], ".r")
plt.plot(current_points[0, :], current_points[1, :], ".b")
plt.plot(0.0, 0.0, "xr")
plt.axis("equal")


def main():
print(__file__ + " start!!")

Expand Down Expand Up @@ -153,5 +169,37 @@ def main():
print("T:", T)


def main_3d_points():
print(__file__ + " start!!")

# simulation parameters for 3d point set
nPoint = 1000
fieldLength = 50.0
motion = [0.5, 2.0, -5, np.deg2rad(-10.0)] # [x[m],y[m],z[m],roll[deg]]

nsim = 3 # number of simulation

for _ in range(nsim):

# previous points
px = (np.random.rand(nPoint) - 0.5) * fieldLength
py = (np.random.rand(nPoint) - 0.5) * fieldLength
pz = (np.random.rand(nPoint) - 0.5) * fieldLength
previous_points = np.vstack((px, py, pz))

# current points
cx = [math.cos(motion[3]) * x - math.sin(motion[3]) * z + motion[0]
for (x, z) in zip(px, pz)]
cy = [y + motion[1] for y in py]
cz = [math.sin(motion[3]) * x + math.cos(motion[3]) * z + motion[2]
for (x, z) in zip(px, pz)]
current_points = np.vstack((cx, cy, cz))

R, T = icp_matching(previous_points, current_points)
print("R:", R)
print("T:", T)


if __name__ == '__main__':
main()
main_3d_points()
5 changes: 5 additions & 0 deletions tests/test_iterative_closest_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,5 +7,10 @@ def test_1():
m.main()


def test_2():
m.show_animation = False
m.main_3d_points()


if __name__ == '__main__':
conftest.run_this_test(__file__)