-
Notifications
You must be signed in to change notification settings - Fork 5.9k
Add sequence concat op #4508
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add sequence concat op #4508
Changes from 8 commits
be3fa79
a35e82a
927767b
0028459
d211b51
a4d410a
462579c
e880a35
ad477b9
69e92b3
d68122f
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,123 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #include "paddle/operators/sequence_concat_op.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| class SequenceConcatOp : public framework::OperatorWithKernel { | ||
| public: | ||
| using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
|
||
| protected: | ||
| void InferShape(framework::InferShapeContext* ctx) const override { | ||
| PADDLE_ENFORCE(ctx->HasInputs("X"), | ||
| "Inputs(X) of SequenceConcatOp should not be null."); | ||
| PADDLE_ENFORCE(ctx->HasOutput("Out"), | ||
| "Output(Out) of SequenceConcatOp should not be null."); | ||
| const size_t level = static_cast<size_t>(ctx->Attrs().Get<int>("level")); | ||
| const size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis")); | ||
| PADDLE_ENFORCE(level == 0UL || level == 1UL, | ||
| "The sequence_concat operator only accepts sequence " | ||
| "or a nested sequence as its input."); | ||
| auto ins_dims = ctx->GetInputsDim("X"); | ||
| framework::DDim out_dims = ins_dims[0]; | ||
| const size_t n = ins_dims.size(); | ||
| for (size_t i = 1; i < n; ++i) { | ||
| out_dims[axis] += ins_dims[i][axis]; | ||
| } | ||
| ctx->SetOutputDim("Out", out_dims); | ||
| } | ||
| }; | ||
|
|
||
| class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker { | ||
| public: | ||
| SequenceConcatOpMaker(framework::OpProto* proto, | ||
| framework::OpAttrChecker* op_checker) | ||
| : OpProtoAndCheckerMaker(proto, op_checker) { | ||
| AddInput("X", | ||
| "(A vector of LoDTensor), the input is a vector of LoDTensor, " | ||
| "each of which is a variable-length sequence or nested sequence.") | ||
| .AsDuplicable(); | ||
| AddOutput("Out", | ||
| "(A LoDTensor), the variable-length output of " | ||
| "sequence_concat Op."); | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. AddOutput("Out",
"(A LoDTensor), the variable-length output of "
"sequence_concat Op.");
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done. |
||
| AddAttr<int>("axis", | ||
| "(int, default 0)" | ||
| "The axis which the inputs will be joined with." | ||
| "If axis is 0, the inputs will be joined with LoD index.") | ||
| .SetDefault(0); | ||
| AddAttr<int>("level", | ||
| "(int, default 0)" | ||
| "The level at which the inputs will be joined." | ||
| "If the level is 0, the inputs will be joined at the nested " | ||
| "sequence level." | ||
| "If the level is 1, the inputs will be joined at the " | ||
| "sequence level.") | ||
| .SetDefault(0); | ||
| AddComment(R"DOC( | ||
| The sequence_concat operator concatenates multiple LoDTensors. | ||
| It only supports sequence (LoD Tensor with level number is 1) | ||
| or a nested sequence (LoD tensor with level number is 2) as its input. | ||
| - Case1: | ||
| If the axis is other than 0(here, axis is 1 and level is 1), | ||
| each input should have the same LoD information and the LoD | ||
| information of the output keeps the same as the input. | ||
| LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) | ||
| LoD(x1) = {{0,2,4}, {0,1,2,3,4}}; Dims(x1) = (4,4,4) | ||
| LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4) | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. line 78前,line 80后分别空一行吧,下同。
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done. |
||
| - Case2: | ||
| If the axis is 0(here, leve is 0), the inputs are concatenated along | ||
| time steps, the LoD information of the output need to re-compute. | ||
| LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) | ||
| LoD(x1) = {{0,3,5}, {0,1,2,3,5}}; Dims(x1) = (5,3,4) | ||
| LoD(Out) = {{0,5,9}, {0,1,2,3,4,5,6,7,9}}; Dims(Out) = (9,3,4) | ||
| - Case3: | ||
| If the axis is 0(here, level is 1). | ||
| LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) | ||
| LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (5,3,4) | ||
| LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9,3,4) | ||
|
|
||
| NOTE: The levels of all the inputs should be the same. | ||
| )DOC"); | ||
| } | ||
| }; | ||
|
|
||
| class SequenceConcatGradOp : public framework::OperatorWithKernel { | ||
| public: | ||
| using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
|
||
| protected: | ||
| void InferShape(framework::InferShapeContext* ctx) const override { | ||
| PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), | ||
| "The gradient of Out should not be null."); | ||
| PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")), | ||
| "The gradient of X should not be null."); | ||
| ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X")); | ||
| } | ||
| }; | ||
|
|
||
| } // namespace operators | ||
| } // namespace paddle | ||
|
|
||
| namespace ops = paddle::operators; | ||
| REGISTER_OP(sequence_concat, ops::SequenceConcatOp, ops::SequenceConcatOpMaker, | ||
| sequence_concat_grad, ops::SequenceConcatGradOp); | ||
| REGISTER_OP_CPU_KERNEL( | ||
| sequence_concat, | ||
| ops::SequenceConcatOpKernel<paddle::platform::CPUPlace, float>); | ||
| REGISTER_OP_CPU_KERNEL( | ||
| sequence_concat_grad, | ||
| ops::SequenceConcatGradOpKernel<paddle::platform::CPUPlace, float>); | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,25 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #define EIGEN_USE_GPU | ||
|
|
||
| #include "paddle/operators/sequence_concat_op.h" | ||
|
|
||
| namespace ops = paddle::operators; | ||
| REGISTER_OP_GPU_KERNEL( | ||
| sequence_concat, | ||
| ops::SequenceConcatOpKernel<paddle::platform::GPUPlace, float>); | ||
| REGISTER_OP_GPU_KERNEL( | ||
| sequence_concat_grad, | ||
| ops::SequenceConcatGradOpKernel<paddle::platform::GPUPlace, float>); |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,155 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #pragma once | ||
| #include "paddle/framework/op_registry.h" | ||
| #include "paddle/operators/strided_memcpy.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| using Tensor = framework::Tensor; | ||
| using LoDTensor = framework::LoDTensor; | ||
| using LoD = framework::LoD; | ||
|
|
||
| template <typename T> | ||
| LoD concatLoD(const std::vector<const T*> ins, const size_t axis, | ||
| const size_t level) { | ||
| auto out_lod = ins[0]->lod(); | ||
| const size_t n = ins.size(); | ||
| if (axis == 0UL) { | ||
| if (level == 0UL) { | ||
| for (size_t i = 1; i < n; ++i) { | ||
| for (size_t j = 0; j < ins[i]->lod()[0].size(); ++j) { | ||
| out_lod[0][j] += ins[i]->lod()[0][j]; | ||
| } | ||
| } | ||
| } else if (level == 1UL) { | ||
| PADDLE_ENFORCE_EQ(ins[0]->NumLevels(), 2UL, | ||
| "If the level is 1, all of the inputs " | ||
| "should be the nested sequence."); | ||
| for (size_t i = 1; i < n; ++i) { | ||
| for (size_t j = 0; j < ins[i]->lod()[0].size(); ++j) { | ||
| out_lod[0].push_back(ins[i]->lod()[0][j]); | ||
| } | ||
| for (size_t j = 0; j < ins[i]->lod()[1].size(); ++j) { | ||
| out_lod[1][j] += ins[i]->lod()[1][j]; | ||
| } | ||
| } | ||
| } | ||
| } | ||
| return out_lod; | ||
| } | ||
|
|
||
| template <typename Place, typename T> | ||
| class SequenceConcatOpKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| auto ins = ctx.MultiInput<LoDTensor>("X"); | ||
| auto* out = ctx.Output<LoDTensor>("Out"); | ||
| const size_t axis = static_cast<size_t>(ctx.Attr<int>("axis")); | ||
| const size_t level = static_cast<size_t>(ctx.Attr<int>("level")); | ||
| const size_t n = ins.size(); | ||
|
|
||
| for (size_t i = 1; i < n; ++i) { | ||
| PADDLE_ENFORCE_EQ(ins[0]->NumLevels(), ins[i]->NumLevels(), | ||
| "The levels of all the input LoDTensors " | ||
| "should be the same."); | ||
| PADDLE_ENFORCE_EQ(ins[0]->dims().size(), ins[i]->dims().size(), | ||
| "The dimension size of all the input LoDTensors " | ||
| "should be the same."); | ||
|
|
||
| const size_t dims_size = ins[i]->dims().size(); | ||
| for (size_t j = 0; j < dims_size; ++j) { | ||
| if (j == axis) continue; | ||
| PADDLE_ENFORCE_EQ(ins[0]->dims()[j], ins[i]->dims()[j], | ||
| "Except for the dimension of the specified " | ||
| "axis along which all the inputs are concatenated, " | ||
| "dimensions of all the other axises of the input " | ||
| "LoDTensors should be the same."); | ||
| } | ||
| } | ||
|
|
||
| out->mutable_data<T>(ctx.GetPlace()); | ||
| auto out_lod = concatLoD<LoDTensor>(ins, axis, level); | ||
| out->set_lod(out_lod); | ||
|
|
||
| auto out_lod_level = out_lod[level]; | ||
| for (size_t i = 0; i < out_lod_level.size() - 1; ++i) { | ||
| Tensor out_t = out->Slice<T>(static_cast<int>(out_lod_level[i]), | ||
| static_cast<int>(out_lod_level[i + 1])); | ||
| auto out_stride = framework::stride(out_t.dims()); | ||
| size_t offset = 0; | ||
|
|
||
| for (size_t j = 0; j < n; ++j) { | ||
| auto in_lod_level = ins[j]->lod()[level]; | ||
| auto in_stride = framework::stride(ins[j]->dims()); | ||
| Tensor in_t = ins[j]->Slice<T>(static_cast<int>(in_lod_level[i]), | ||
| static_cast<int>(in_lod_level[i + 1])); | ||
| size_t axis_dim = in_t.dims()[axis]; | ||
| StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(), in_stride, | ||
| in_t.dims(), out_stride, out_t.data<T>() + offset); | ||
| offset += axis_dim * in_stride[axis]; | ||
| } | ||
| } | ||
| } | ||
| }; | ||
|
|
||
| template <typename Place, typename T> | ||
| class SequenceConcatGradOpKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| auto ins = ctx.MultiInput<framework::LoDTensor>("X"); | ||
| auto* out_grad = | ||
| ctx.Input<framework::LoDTensor>(framework::GradVarName("Out")); | ||
| auto x_grads = | ||
| ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X")); | ||
| size_t axis = static_cast<size_t>(ctx.Attr<int>("axis")); | ||
| size_t level = static_cast<size_t>(ctx.Attr<int>("level")); | ||
| const size_t n = x_grads.size(); | ||
|
|
||
| // Set Grad(X) LoD as X | ||
| for (size_t i = 0; i < n; i++) { | ||
| x_grads[i]->set_lod(ins[i]->lod()); | ||
| x_grads[i]->mutable_data<T>(ctx.GetPlace()); | ||
| } | ||
|
|
||
| auto out_lod = concatLoD<LoDTensor>(ins, axis, level); | ||
| auto out_lod_level = out_lod[level]; | ||
|
|
||
| for (size_t i = 0; i < out_lod_level.size() - 1; ++i) { | ||
| Tensor out_grad_t = | ||
| out_grad->Slice<T>(static_cast<int>(out_lod_level[i]), | ||
| static_cast<int>(out_lod_level[i + 1])); | ||
| auto out_grad_stride = framework::stride(out_grad_t.dims()); | ||
| size_t offset = 0; | ||
|
|
||
| for (size_t j = 0; j < n; ++j) { | ||
| auto x_grad_lod_level = x_grads[j]->lod()[level]; | ||
| auto x_grad_stride = framework::stride(x_grads[j]->dims()); | ||
| Tensor x_grad_t = | ||
| x_grads[j]->Slice<T>(static_cast<int>(x_grad_lod_level[i]), | ||
| static_cast<int>(x_grad_lod_level[i + 1])); | ||
| size_t axis_dim = x_grad_t.dims()[axis]; | ||
| StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>() + offset, | ||
| out_grad_stride, out_grad_t.dims(), x_grad_stride, | ||
| x_grad_t.data<T>()); | ||
| offset += axis_dim * out_grad_stride[axis]; | ||
| } | ||
| } | ||
| } | ||
| }; | ||
|
|
||
| } // namespace operators | ||
| } // namespace paddle |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,77 @@ | ||
| import unittest | ||
| import numpy as np | ||
| from op_test import OpTest | ||
|
|
||
|
|
||
| class TestConcatOp(OpTest): | ||
| def set_data(self): | ||
| # two level, batch size is 3 | ||
| x0 = np.random.random((4, 6, 3)).astype('float32') | ||
| lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]] | ||
| x1 = np.random.random((4, 8, 3)).astype('float32') | ||
| lod1 = [[0, 2, 4], [0, 1, 2, 3, 4]] | ||
| axis = 1 | ||
| level = 1 | ||
| self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]} | ||
| self.attrs = {'axis': axis, 'level': level} | ||
| outs = [] | ||
| for i in range(4): | ||
| sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :] | ||
| sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :] | ||
| outs.append(np.concatenate((sub_x0, sub_x1), axis=axis)) | ||
|
|
||
| self.outputs = {'Out': np.concatenate(outs, axis=0)} | ||
|
|
||
| def setUp(self): | ||
| self.op_type = "sequence_concat" | ||
| self.set_data() | ||
|
|
||
| def test_check_output(self): | ||
| self.check_output() | ||
|
|
||
| def test_check_grad(self): | ||
| self.check_grad(['x0'], 'Out') | ||
|
|
||
|
|
||
| class TestConcatOpDiffLod(TestConcatOp): | ||
| def set_data(self): | ||
| # two level, batch size is 3 | ||
| x0 = np.random.random((4, 6, 3)).astype('float32') | ||
| lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]] | ||
| x1 = np.random.random((5, 6, 3)).astype('float32') | ||
| lod1 = [[0, 3, 5], [0, 1, 2, 3, 5]] | ||
| axis = 0 | ||
| level = 1 | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done. Add a unit test with level=0. |
||
| self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]} | ||
| self.attrs = {'axis': axis, 'level': level} | ||
| outs = [] | ||
| for i in range(4): | ||
| sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :] | ||
| sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :] | ||
| outs.append(np.concatenate((sub_x0, sub_x1), axis=axis)) | ||
|
|
||
| self.outputs = {'Out': np.concatenate(outs, axis=0)} | ||
|
|
||
|
|
||
| class TestConcatOpLevelZero(TestConcatOp): | ||
| def set_data(self): | ||
| # two level, batch size is 3 | ||
| x0 = np.random.random((4, 3, 4)).astype('float32') | ||
| lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]] | ||
| x1 = np.random.random((5, 3, 4)).astype('float32') | ||
| lod1 = [[0, 3, 5], [0, 1, 3, 4, 5]] | ||
| axis = 0 | ||
| level = 0 | ||
| self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]} | ||
| self.attrs = {'axis': axis, 'level': level} | ||
| outs = [] | ||
| for i in range(2): | ||
| sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :] | ||
| sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :] | ||
| outs.append(np.concatenate((sub_x0, sub_x1), axis=axis)) | ||
|
|
||
| self.outputs = {'Out': np.concatenate(outs, axis=0)} | ||
|
|
||
|
|
||
| if __name__ == '__main__': | ||
| unittest.main() | ||
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
之前设计框架时讨论,
InferShape里是要能够推断出完成的Shape信息,所以下面LoD的check,set_lod,concatLoD实现可能需要移到这里。 @reyoungUh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
赞同在InferShape里推断出所有Shape信息,但现在的接口貌似还没有获取LoD的接口?
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/shape_inference.h#L25