-
Notifications
You must be signed in to change notification settings - Fork 5.9k
Add CUDA kernel for prior_box_op. #9553
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,167 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #include "paddle/fluid/operators/prior_box_op.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| template <typename T> | ||
| __device__ inline T clip(T in) { | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
| return min(max(in, 0.), 1.); | ||
| } | ||
|
|
||
| template <typename T> | ||
| __global__ void GenPriorBox(T* out, const T* aspect_ratios, const int height, | ||
| const int width, const int im_height, | ||
| const int im_width, const int as_num, | ||
| const T offset, const T step_width, | ||
| const T step_height, const T* min_sizes, | ||
| const T* max_sizes, const int min_num, | ||
| bool is_clip) { | ||
| int num_priors = max_sizes ? as_num * min_num + min_num : as_num * min_num; | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 你在host上不是算过 而且两个地方的计算方式貌似不一样,确认下?
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 想少传递一些参数,就在kernel里也计算了下。 |
||
| int box_num = height * width * num_priors; | ||
| for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < box_num; | ||
| i += blockDim.x * gridDim.x) { | ||
| int h = i / (num_priors * width); | ||
| int w = (i / num_priors) % width; | ||
| int p = i % num_priors; | ||
| int m = max_sizes ? p / (as_num + 1) : p / as_num; | ||
| T cx = (w + offset) * step_width; | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yeah, each box needs to mul step_width https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/gserver/layers/PriorBox.cpp#L105 |
||
| T cy = (h + offset) * step_height; | ||
| T bw, bh; | ||
| T min_size = min_sizes[m]; | ||
| if (max_sizes) { | ||
| int s = p % (as_num + 1); | ||
| if (s < as_num) { | ||
| T ar = aspect_ratios[s]; | ||
| bw = min_size * sqrt(ar) / 2.; | ||
| bh = min_size / sqrt(ar) / 2.; | ||
| } else { | ||
| T max_size = max_sizes[m]; | ||
| bw = sqrt(min_size * max_size) / 2.; | ||
| bh = bw; | ||
| } | ||
| } else { | ||
| int s = p % as_num; | ||
| T ar = aspect_ratios[s]; | ||
| bw = min_size * sqrt(ar) / 2.; | ||
| bh = min_size / sqrt(ar) / 2.; | ||
| } | ||
| T xmin = (cx - bw) / im_width; | ||
| T ymin = (cy - bh) / im_height; | ||
| T xmax = (cx + bw) / im_width; | ||
| T ymax = (cy + bh) / im_height; | ||
| out[i * 4] = is_clip ? clip<T>(xmin) : xmin; | ||
| out[i * 4 + 1] = is_clip ? clip<T>(ymin) : ymin; | ||
| out[i * 4 + 2] = is_clip ? clip<T>(xmax) : xmax; | ||
| out[i * 4 + 3] = is_clip ? clip<T>(ymax) : ymax; | ||
| } | ||
| } | ||
|
|
||
| template <typename T> | ||
| __global__ void SetVariance(T* out, const T* var, const int vnum, | ||
| const int num) { | ||
| for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num; | ||
| i += blockDim.x * gridDim.x) { | ||
| out[i] = var[i % vnum]; | ||
| } | ||
| } | ||
|
|
||
| template <typename T> | ||
| class PriorBoxOpCUDAKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| auto* input = ctx.Input<paddle::framework::Tensor>("Input"); | ||
| auto* image = ctx.Input<paddle::framework::Tensor>("Image"); | ||
| auto* boxes = ctx.Output<paddle::framework::Tensor>("Boxes"); | ||
| auto* vars = ctx.Output<paddle::framework::Tensor>("Variances"); | ||
|
|
||
| auto min_sizes = ctx.Attr<std::vector<float>>("min_sizes"); | ||
| auto max_sizes = ctx.Attr<std::vector<float>>("max_sizes"); | ||
| auto input_aspect_ratio = ctx.Attr<std::vector<float>>("aspect_ratios"); | ||
| auto variances = ctx.Attr<std::vector<float>>("variances"); | ||
| auto flip = ctx.Attr<bool>("flip"); | ||
| auto clip = ctx.Attr<bool>("clip"); | ||
|
|
||
| std::vector<float> aspect_ratios; | ||
| ExpandAspectRatios(input_aspect_ratio, flip, aspect_ratios); | ||
|
|
||
| T step_w = static_cast<T>(ctx.Attr<float>("step_w")); | ||
| T step_h = static_cast<T>(ctx.Attr<float>("step_h")); | ||
| T offset = static_cast<T>(ctx.Attr<float>("offset")); | ||
|
|
||
| auto im_width = image->dims()[3]; | ||
| auto im_height = image->dims()[2]; | ||
|
|
||
| auto width = input->dims()[3]; | ||
| auto height = input->dims()[2]; | ||
|
|
||
| T step_width, step_height; | ||
| if (step_w == 0 || step_h == 0) { | ||
| step_width = static_cast<T>(im_width) / width; | ||
| step_height = static_cast<T>(im_height) / height; | ||
| } else { | ||
| step_width = step_w; | ||
| step_height = step_h; | ||
| } | ||
|
|
||
| int num_priors = aspect_ratios.size() * min_sizes.size(); | ||
| if (max_sizes.size() > 0) { | ||
| num_priors += max_sizes.size(); | ||
| } | ||
| int min_num = static_cast<int>(min_sizes.size()); | ||
| int box_num = width * height * num_priors; | ||
|
|
||
| int block = 512; | ||
| int grid = (box_num + block - 1) / block; | ||
|
|
||
| auto stream = | ||
| ctx.template device_context<platform::CUDADeviceContext>().stream(); | ||
|
|
||
| boxes->mutable_data<T>(ctx.GetPlace()); | ||
| vars->mutable_data<T>(ctx.GetPlace()); | ||
|
|
||
| framework::Tensor r; | ||
| framework::TensorFromVector(aspect_ratios, ctx.device_context(), &r); | ||
|
|
||
| framework::Tensor min; | ||
| framework::TensorFromVector(min_sizes, ctx.device_context(), &min); | ||
|
|
||
| T* max_data = nullptr; | ||
| framework::Tensor max; | ||
| if (max_sizes.size() > 0) { | ||
| framework::TensorFromVector(max_sizes, ctx.device_context(), &max); | ||
| max_data = max.data<T>(); | ||
| } | ||
|
|
||
| GenPriorBox<T><<<grid, block, 0, stream>>>( | ||
| boxes->data<T>(), r.data<T>(), height, width, im_height, im_width, | ||
| aspect_ratios.size(), offset, step_width, step_height, min.data<T>(), | ||
| max_data, min_num, clip); | ||
|
|
||
| framework::Tensor v; | ||
| framework::TensorFromVector(variances, ctx.device_context(), &v); | ||
| grid = (box_num * 4 + block - 1) / block; | ||
| SetVariance<T><<<grid, block, 0, stream>>>(vars->data<T>(), v.data<T>(), | ||
| variances.size(), box_num * 4); | ||
| } | ||
| }; // namespace operators | ||
|
|
||
| } // namespace operators | ||
| } // namespace paddle | ||
|
|
||
| namespace ops = paddle::operators; | ||
| REGISTER_OP_CUDA_KERNEL(prior_box, ops::PriorBoxOpCUDAKernel<float>, | ||
| ops::PriorBoxOpCUDAKernel<double>); | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
2016->2018