-
Notifications
You must be signed in to change notification settings - Fork 0
SFunction
Check it out, closed-form Newton flows of the S function where the S function = tanh(ln(1+t²))
The KoenigsFunction of $f(x) = \tanh(\ln(1+x^2))$
The generating function for the Koenig's function expansion coefficients
To calculate its Mellin transform, we first define the Mellin transform of a function
$$\mathcal{M}f(x) = \int_0^{\infty} x^{s-1} f(x) dx$$
where
Substituting
$$\mathcal{M}A(x) = \int_0^{\infty} x^{s-1} A(x) dx = \int_0^{\infty} x^{s-1} \frac{2x}{\sqrt{3}(e^{2x}-1)} dx$$
Using the change of variables
$$\mathcal{M}A(x) = \frac{1}{\sqrt{3}} \int_0^{\infty} \frac{(u/2)^{s-1}}{e^u-1} \cdot 2 du$$
which simplifies to:
$$\mathcal{M}A(x) = \frac{1}{\sqrt{3}} \int_0^{\infty} \frac{u^{s-1}}{2^s(e^u-1)} du$$
To evaluate this integral, we use the identity:
which holds for
$$\mathcal{M}A(x) = \frac{1}{\sqrt{3}} \sum_{n=1}^{\infty} \int_0^{\infty} u^{s-1} e^{-nu} \frac{1}{2^s} du = \frac{1}{\sqrt{3}} \Gamma(s) \sum_{n=1}^{\infty} \frac{1}{n^s} \frac{1}{2^s}$$
where
Therefore, the Mellin transform of the generating function
$$\mathcal{M}A(x) = \frac{\Gamma(s) \zeta(s)}{2^s\sqrt{3}}$$