-
Notifications
You must be signed in to change notification settings - Fork 0
UniformRKHSConvergence
A Hilbert space
- For every
$x \in D$ , the function$k_x(\cdot) = k(\cdot, x)$ belongs to$H$ . - For every
$x \in D$ and every$f \in H$ , the reproducing property holds:$f(x) = \langle f, k_x \rangle_H$ .
The function
A sequence of functions
- Orthonormality: For all indices
$n, m$ ,$\langle e_n, e_m \rangle_H = \delta_{nm}$ , where$\delta_{nm}$ is the Kronecker delta. - Completeness: The span of
${e_n}_{n=1}^{\infty}$ is dense in$H$ , which means: a. For any$f \in H$ , if$\langle f, e_n \rangle_H = 0$ for all$n$ , then$f = 0$ . b. Equivalently, every function$f \in H$ can be represented as
with convergence in the
- Parseval's Identity: For any
$f \in H$ ,
In an RKHS, each basis function satisfies the reproducing property:
Let
-
${e_n}_{n=1}^{\infty}$ is an orthonormal basis of$H$ as defined above. - The kernel is uniformly bounded on
$D$ ; that is, there exists a constant$M > 0$ such that
Then for any function
where
converge uniformly to
By the completeness property of the orthonormal basis, every function
Using the Cauchy-Schwarz inequality:
Taking the supremum over
By the uniform boundedness assumption:
From the convergence property of orthonormal bases:
For any
Then for all
Thus:
-
The uniform boundedness condition on
$|k(\cdot, x)|_H$ is essential. Without it, norm convergence in the RKHS does not guarantee uniform convergence of evaluations on$D$ . This condition ensures the kernel's feature maps are uniformly bounded across the entire domain. -
The domain
$D$ need not be compact. The result holds for arbitrary domains (e.g.,$D = \mathbb{R}^n$ ) as long as$\sup_{x \in D} |k(\cdot, x)|_H \le M$ . -
The uniform convergence applies to expansions of functions
$f \in H$ in any orthonormal basis. For expansions of the kernel$k(x, y)$ itself, uniform convergence holds only for the Mercer eigenbasis${e_n^*}$ satisfying:
Non-Mercer bases yield pointwise convergence.
-
Riesz, F. (1907). Sur les systèmes orthogonaux de fonctions. Comptes rendus de l'Académie des sciences, 144:615--619.
-
Fischer, E. (1907). Sur la convergence en moyenne. Comptes rendus de l'Académie des sciences, 144:1022--1024.
-
Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3):337--404.
-
Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer, Boston, MA.