We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
The structure function $\gamma(h)$ is defined as:
$$\begin{align*} \gamma(h) &= \text{Var}(f(t) - f(t + h)) \\ &= \left< ( f(t + h) - f(t) )^2 \right> \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} ( f(t + h) - f(t) )^2 dt \end{align*}$$
For $f(t) = \sin(t)$, the difference $f(t + h) - f(t)$ is: $$\sin(t + h) - \sin(t) = 2 \cos\left(t + \frac{h}{2}\right) \sin\left(\frac{h}{2}\right)$$
Squaring this gives: $$\left( \sin(t + h) - \sin(t) \right)^2 = 4 \cos^2\left(t + \frac{h}{2}\right) \sin^2\left(\frac{h}{2}\right)$$
Taking the expectation value over $t$ and the integral form yield:
$$\begin{align*} \gamma(h) &= \left< 4 \cos^2\left(t + \frac{h}{2}\right) \sin^2\left(\frac{h}{2}\right) \right> \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} 4 \cos^2\left(t + \frac{h}{2}\right) \sin^2\left(\frac{h}{2}\right) dt \\ &= 2 \sin^2\left(\frac{h}{2}\right) \end{align*}$$
Links