Welcome to the AI Developer Hub repository! This project contains Jupyter Notebook tutorials and guides for training, fine-tuning, and inference using popular machine learning frameworks on AMD GPUs.
| Category | Title | GitHub Link | AMD Tutorial Page |
|---|---|---|---|
| Inference Tutorials | ChatQnA vLLM deployment and performance evaluation | GitHub | AMD Tutorial |
| Text-to-video generation with ComfyUI on Radeon GPU | GitHub | AMD Tutorial | |
| DeepSeek Janus Pro on CPU or GPU | GitHub | AMD Tutorial | |
| DeepSeek-R1 with vLLM V1 | GitHub | AMD Tutorial | |
| AI agent with MCPs using vLLM and PydanticAI | GitHub | AMD Tutorial | |
| Multi-agents with Google ADK and A2A protocol | GitHub | AMD Tutorial | |
| Hugging Face Transformers | GitHub | AMD Tutorial | |
| Deploying with vLLM | GitHub | AMD Tutorial | |
| From chatbot to rap bot with vLLM | GitHub | AMD Tutorial | |
| RAG with LlamaIndex and Ollama | GitHub | AMD Tutorial | |
| OCR with vision-language models with vLLM | GitHub | AMD Tutorial | |
| Building AI pipelines for voice assistants | GitHub | AMD Tutorial | |
| Speculative decoding with vLLM | GitHub | AMD Tutorial | |
| DeepSeekR1 with SGLang and example applications | GitHub | AMD Tutorial | |
| PD disaggregation with SGLang | GitHub | AMD Tutorial | |
| Accelerating DeepSeek-V3 inference using multi-token prediction in SGLang | GitHub | AMD Tutorial | |
| Fine-Tuning Tutorials | VLM with PEFT | GitHub | AMD Tutorial |
| Llama-3.1 8B with torchtune | GitHub | AMD Tutorial | |
| Llama-3.1 8B with Llama Factory | GitHub | AMD Tutorial | |
| GRPO with Unsloth | GitHub | AMD Tutorial | |
| Pretraining Tutorials | Training configuration with Megatron-LM | GitHub | AMD Tutorial |
| LLM with Megatron-LM | GitHub | AMD Tutorial | |
| Llama-3.1 8B with torchtitan | GitHub | AMD Tutorial | |
| Custom diffusion model | GitHub | AMD Tutorial | |
| GPU Development and Optimization Tutorials | Integrate MLA decoding kernel of AITER library | GitHub | AMD Tutorial |
| Kernel development and optimizations with Triton | GitHub | AMD Tutorial | |
| Profiling Llama-4 inference with vLLM | GitHub | AMD Tutorial | |
| FP8 quantization with AMD Quark for vLLM | GitHub | AMD Tutorial | |
| About | Licensing and Support Information | GitHub | AMD Tutorial |
The tutorials are organized into four main categories:
- Fine-Tuning: Examples and guides for fine-tuning machine learning models.
- Pretraining: Tutorials on pretraining models from scratch.
- Inference: Resources for running inference with trained models.
- GPU development and optimization: Resources for optimizing AI compute and kernel development on GPUs.
github_repo/
├── docs/ # Documentation for the tutorials
│ ├── index.md # Main documentation index
│ ├── fine_tune.md # Fine-tuning tutorials index
│ ├── pretrain.md # Pretraining tutorials index
│ ├── inference.md # Inference tutorials index
│ └── notebooks/ # Jupyter notebooks organized by category
│ ├── gpu_dev_optimize/ # GPU development and optimization notebooks
│ ├── fine_tune/ # Fine-tuning notebooks
│ ├── pretrain/ # Pretraining notebooks
│ └── inference/ # Inference notebooks