Skip to content
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
b74aa2c
add donut fast image processor support
rootonchair Mar 28, 2025
1930152
run make style
rootonchair Mar 28, 2025
4f3b18b
Update src/transformers/models/donut/image_processing_donut_fast.py
rootonchair Apr 1, 2025
d38bfd0
update test, remove none default values
rootonchair Apr 1, 2025
357bd0e
Merge branch 'donut_fast_image_processor' of github.com:rootonchair/t…
rootonchair Apr 1, 2025
07ee506
add do_align_axis = True test, fix bug in slow image processor
rootonchair Apr 1, 2025
b14edcb
run make style
rootonchair Apr 1, 2025
c58ddb5
remove np usage
rootonchair Apr 1, 2025
22dbfec
make style
rootonchair Apr 1, 2025
fc66a32
Apply suggestions from code review
rootonchair Apr 2, 2025
d91ae7c
Merge branch 'main' into donut_fast_image_processor
yonigozlan Apr 7, 2025
0406e55
Update src/transformers/models/donut/image_processing_donut_fast.py
rootonchair Apr 8, 2025
5443306
add size revert in preprocess
rootonchair Apr 8, 2025
92d2f64
make style
rootonchair Apr 8, 2025
98588ad
fix copies
rootonchair Apr 8, 2025
73c901c
add test for preprocess with kwargs
rootonchair Apr 8, 2025
6aafa0c
make style
rootonchair Apr 8, 2025
f2cfc94
Merge branch 'main' into donut_fast_image_processor
rootonchair Apr 10, 2025
01fc2ff
handle None input_data_format in align_long_axis
rootonchair Apr 11, 2025
93bcc22
Merge branch 'main' into donut_fast_image_processor
rootonchair Apr 11, 2025
dba0096
Merge branch 'donut_fast_image_processor' of github.com:rootonchair/t…
rootonchair Apr 11, 2025
79d9198
Merge branch 'main' into donut_fast_image_processor
yonigozlan Apr 14, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/source/en/model_doc/donut.md
Original file line number Diff line number Diff line change
Expand Up @@ -197,6 +197,11 @@ We refer to the [tutorial notebooks](https://github.com/NielsRogge/Transformers-
[[autodoc]] DonutImageProcessor
- preprocess

## DonutImageProcessorFast

[[autodoc]] DonutImageProcessorFast
- preprocess

## DonutFeatureExtractor

[[autodoc]] DonutFeatureExtractor
Expand Down
2 changes: 2 additions & 0 deletions src/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -1350,6 +1350,7 @@
_import_structure["models.deit"].append("DeiTImageProcessorFast")
_import_structure["models.depth_pro"].append("DepthProImageProcessorFast")
_import_structure["models.detr"].append("DetrImageProcessorFast")
_import_structure["models.donut"].append("DonutImageProcessorFast")
_import_structure["models.gemma3"].append("Gemma3ImageProcessorFast")
_import_structure["models.got_ocr2"].append("GotOcr2ImageProcessorFast")
_import_structure["models.llava"].append("LlavaImageProcessorFast")
Expand Down Expand Up @@ -6609,6 +6610,7 @@
from .models.deit import DeiTImageProcessorFast
from .models.depth_pro import DepthProImageProcessorFast
from .models.detr import DetrImageProcessorFast
from .models.donut import DonutImageProcessorFast
from .models.gemma3 import Gemma3ImageProcessorFast
from .models.got_ocr2 import GotOcr2ImageProcessorFast
from .models.llava import LlavaImageProcessorFast
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/auto/image_processing_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@
("detr", ("DetrImageProcessor", "DetrImageProcessorFast")),
("dinat", ("ViTImageProcessor", "ViTImageProcessorFast")),
("dinov2", ("BitImageProcessor",)),
("donut-swin", ("DonutImageProcessor",)),
("donut-swin", ("DonutImageProcessor", "DonutImageProcessorFast")),
("dpt", ("DPTImageProcessor",)),
("efficientformer", ("EfficientFormerImageProcessor",)),
("efficientnet", ("EfficientNetImageProcessor",)),
Expand Down
1 change: 1 addition & 0 deletions src/transformers/models/donut/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
from .configuration_donut_swin import *
from .feature_extraction_donut import *
from .image_processing_donut import *
from .image_processing_donut_fast import *
from .modeling_donut_swin import *
from .processing_donut import *
else:
Expand Down
297 changes: 297 additions & 0 deletions src/transformers/models/donut/image_processing_donut_fast.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,297 @@
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Image processor class for Donut."""

from typing import Optional, Union

import numpy as np

from ...image_processing_utils_fast import (
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
BaseImageProcessorFast,
BatchFeature,
DefaultFastImageProcessorKwargs,
)
from ...image_transforms import ChannelDimension, group_images_by_shape, reorder_images
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ImageInput,
PILImageResampling,
SizeDict,
get_image_size,
)
from ...processing_utils import Unpack
from ...utils import (
TensorType,
add_start_docstrings,
is_torch_available,
is_torchvision_available,
is_torchvision_v2_available,
logging,
)


logger = logging.get_logger(__name__)

if is_torch_available():
import torch

if is_torchvision_available():
if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F


class DonutFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
do_thumbnail: Optional[bool]
do_align_long_axis: Optional[bool]
do_pad: Optional[bool]


@add_start_docstrings(
"Constructs a fast Donut image processor.",
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
"""
do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`):
Whether to resize the image using thumbnail method.
do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`):
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random
amount of padding on each size, up to the largest image size in the batch. Otherwise, all images are
padded to the largest image size in the batch.
""",
)
class DonutImageProcessorFast(BaseImageProcessorFast):
# This generated class can be used as a starting point for the fast image processor.
# if the image processor is only used for simple augmentations, such as resizing, center cropping, rescaling, or normalizing,
# only the default values should be set in the class.
# If the image processor requires more complex augmentations, methods from BaseImageProcessorFast can be overridden.
# In most cases, only the `_preprocess` method should be overridden.

# For an example of a fast image processor requiring more complex augmentations, see `LlavaNextImageProcessorFast`.

# Default values should be checked against the slow image processor
# None values left after checking can be removed
resample = PILImageResampling.BILINEAR
image_mean = IMAGENET_STANDARD_MEAN
image_std = IMAGENET_STANDARD_STD
size = {"height": 2560, "width": 1920}
default_to_square = None
crop_size = None
do_resize = True
do_center_crop = None
do_rescale = True
do_normalize = True
do_convert_rgb = None
do_thumbnail = True
do_align_long_axis = False
do_pad = True
valid_kwargs = DonutFastImageProcessorKwargs

def __init__(self, **kwargs: Unpack[DonutFastImageProcessorKwargs]):
super().__init__(**kwargs)

@add_start_docstrings(
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
"""
do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`):
Whether to resize the image using thumbnail method.
do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`):
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random
amount of padding on each size, up to the largest image size in the batch. Otherwise, all images are
padded to the largest image size in the batch.
""",
)
def preprocess(self, images: ImageInput, **kwargs: Unpack[DonutFastImageProcessorKwargs]) -> BatchFeature:
return super().preprocess(images, **kwargs)

def align_long_axis(
self,
image: "torch.Tensor",
size: SizeDict,
) -> "torch.Tensor":
"""
Align the long axis of the image to the longest axis of the specified size.

Args:
image (`torch.Tensor`):
The image to be aligned.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to align the long axis to.

Returns:
`torch.Tensor`: The aligned image.
"""
input_height, input_width = get_image_size(image, channel_dim=ChannelDimension.FIRST)
output_height, output_width = size.height, size.width

if (output_width < output_height and input_width > input_height) or (
output_width > output_height and input_width < input_height
):
height_dim, width_dim = image.dim() - 2, image.dim() - 1
image = torch.rot90(image, 3, dims=[height_dim, width_dim])

return image

def pad_image(
self,
image: "torch.Tensor",
size: SizeDict,
random_padding: bool = False,
) -> "torch.Tensor":
"""
Pad the image to the specified size.

Args:
image (`torch.Tensor`):
The image to be padded.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to pad the image to.
random_padding (`bool`, *optional*, defaults to `False`):
Whether to use random padding or not.
data_format (`str` or `ChannelDimension`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
output_height, output_width = size.height, size.width
input_height, input_width = get_image_size(image, channel_dim=ChannelDimension.FIRST)

delta_width = output_width - input_width
delta_height = output_height - input_height

if random_padding:
pad_top = np.random.randint(low=0, high=delta_height + 1)
pad_left = np.random.randint(low=0, high=delta_width + 1)
else:
pad_top = delta_height // 2
pad_left = delta_width // 2

pad_bottom = delta_height - pad_top
pad_right = delta_width - pad_left

padding = (pad_left, pad_top, pad_right, pad_bottom)
return F.pad(image, padding)

def pad(self, *args, **kwargs):
logger.info("pad is deprecated and will be removed in version 4.27. Please use pad_image instead.")
return self.pad_image(*args, **kwargs)

def thumbnail(
self,
image: "torch.Tensor",
size: SizeDict,
) -> "torch.Tensor":
"""
Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any
corresponding dimension of the specified size.

Args:
image (`np.ndarray`):
The image to be resized.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to resize the image to.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
The resampling filter to use.
data_format (`Optional[Union[str, ChannelDimension]]`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
input_height, input_width = get_image_size(image, channel_dim=ChannelDimension.FIRST)
output_height, output_width = size.height, size.width

# We always resize to the smallest of either the input or output size.
height = min(input_height, output_height)
width = min(input_width, output_width)

if height == input_height and width == input_width:
return image

if input_height > input_width:
width = int(input_width * height / input_height)
elif input_width > input_height:
height = int(input_height * width / input_width)

return self.resize(
image,
size=SizeDict(width=width, height=height),
interpolation=F.InterpolationMode.BICUBIC,
)

def _preprocess(
self,
images: list["torch.Tensor"],
do_resize: bool,
do_thumbnail: bool,
do_align_long_axis: bool,
do_pad: bool,
size: SizeDict,
interpolation: Optional["F.InterpolationMode"],
do_center_crop: bool,
crop_size: SizeDict,
do_rescale: bool,
rescale_factor: float,
do_normalize: bool,
image_mean: Optional[Union[float, list[float]]],
image_std: Optional[Union[float, list[float]]],
return_tensors: Optional[Union[str, TensorType]],
**kwargs,
) -> BatchFeature:
# Group images by size for batched resizing
grouped_images, grouped_images_index = group_images_by_shape(images)
resized_images_grouped = {}
for shape, stacked_images in grouped_images.items():
if do_align_long_axis:
stacked_images = self.align_long_axis(image=stacked_images, size=size)
if do_resize:
shortest_edge = min(size.height, size.width)
stacked_images = self.resize(
image=stacked_images, size=SizeDict(shortest_edge=shortest_edge), interpolation=interpolation
)
if do_thumbnail:
stacked_images = self.thumbnail(image=stacked_images, size=size)
if do_pad:
stacked_images = self.pad_image(image=stacked_images, size=size, random_padding=False)

resized_images_grouped[shape] = stacked_images
resized_images = reorder_images(resized_images_grouped, grouped_images_index)

# Group images by size for further processing
# Needed in case do_resize is False, or resize returns images with different sizes
grouped_images, grouped_images_index = group_images_by_shape(resized_images)
processed_images_grouped = {}
for shape, stacked_images in grouped_images.items():
if do_center_crop:
stacked_images = self.center_crop(stacked_images, crop_size)
# Fused rescale and normalize
stacked_images = self.rescale_and_normalize(
stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std
)
processed_images_grouped[shape] = stacked_images

processed_images = reorder_images(processed_images_grouped, grouped_images_index)
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images

return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors)


__all__ = ["DonutImageProcessorFast"]
7 changes: 7 additions & 0 deletions src/transformers/utils/dummy_torchvision_objects.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,13 @@ def __init__(self, *args, **kwargs):
requires_backends(self, ["torchvision"])


class DonutImageProcessorFast(metaclass=DummyObject):
_backends = ["torchvision"]

def __init__(self, *args, **kwargs):
requires_backends(self, ["torchvision"])


class Gemma3ImageProcessorFast(metaclass=DummyObject):
_backends = ["torchvision"]

Expand Down
Loading