-
Notifications
You must be signed in to change notification settings - Fork 31.7k
Add Fast Image Processor for Donut #37081
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 18 commits
b74aa2c
1930152
4f3b18b
d38bfd0
357bd0e
07ee506
b14edcb
c58ddb5
22dbfec
fc66a32
d91ae7c
0406e55
5443306
92d2f64
98588ad
73c901c
6aafa0c
f2cfc94
01fc2ff
93bcc22
dba0096
79d9198
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,289 @@ | ||
| # coding=utf-8 | ||
| # Copyright 2025 The HuggingFace Inc. team. All rights reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| """Fast Image processor class for Donut.""" | ||
|
|
||
| from typing import Optional, Union | ||
|
|
||
| from ...image_processing_utils_fast import ( | ||
| BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, | ||
| BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS, | ||
| BaseImageProcessorFast, | ||
| BatchFeature, | ||
| DefaultFastImageProcessorKwargs, | ||
| ) | ||
| from ...image_transforms import group_images_by_shape, reorder_images | ||
| from ...image_utils import ( | ||
| IMAGENET_STANDARD_MEAN, | ||
| IMAGENET_STANDARD_STD, | ||
| ImageInput, | ||
| PILImageResampling, | ||
| SizeDict, | ||
| ) | ||
| from ...processing_utils import Unpack | ||
| from ...utils import ( | ||
| TensorType, | ||
| add_start_docstrings, | ||
| is_torch_available, | ||
| is_torchvision_available, | ||
| is_torchvision_v2_available, | ||
| logging, | ||
| ) | ||
|
|
||
|
|
||
| logger = logging.get_logger(__name__) | ||
|
|
||
| if is_torch_available(): | ||
| import torch | ||
|
|
||
| if is_torchvision_available(): | ||
| if is_torchvision_v2_available(): | ||
| from torchvision.transforms.v2 import functional as F | ||
| else: | ||
| from torchvision.transforms import functional as F | ||
|
|
||
|
|
||
| class DonutFastImageProcessorKwargs(DefaultFastImageProcessorKwargs): | ||
| do_thumbnail: Optional[bool] | ||
| do_align_long_axis: Optional[bool] | ||
| do_pad: Optional[bool] | ||
|
|
||
|
|
||
| @add_start_docstrings( | ||
| "Constructs a fast Donut image processor.", | ||
| BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, | ||
| """ | ||
| do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`): | ||
| Whether to resize the image using thumbnail method. | ||
| do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`): | ||
| Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees. | ||
| do_pad (`bool`, *optional*, defaults to `self.do_pad`): | ||
| Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random | ||
| amount of padding on each size, up to the largest image size in the batch. Otherwise, all images are | ||
| padded to the largest image size in the batch. | ||
| """, | ||
| ) | ||
| class DonutImageProcessorFast(BaseImageProcessorFast): | ||
| resample = PILImageResampling.BILINEAR | ||
| image_mean = IMAGENET_STANDARD_MEAN | ||
| image_std = IMAGENET_STANDARD_STD | ||
| size = {"height": 2560, "width": 1920} | ||
| do_resize = True | ||
| do_rescale = True | ||
| do_normalize = True | ||
| do_thumbnail = True | ||
| do_align_long_axis = False | ||
| do_pad = True | ||
| valid_kwargs = DonutFastImageProcessorKwargs | ||
|
|
||
| def __init__(self, **kwargs: Unpack[DonutFastImageProcessorKwargs]): | ||
| size = kwargs.pop("size", None) | ||
| if isinstance(size, (tuple, list)): | ||
| size = size[::-1] | ||
| kwargs["size"] = size | ||
| super().__init__(**kwargs) | ||
rootonchair marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| @add_start_docstrings( | ||
| BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS, | ||
| """ | ||
| do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`): | ||
| Whether to resize the image using thumbnail method. | ||
| do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`): | ||
| Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees. | ||
| do_pad (`bool`, *optional*, defaults to `self.do_pad`): | ||
| Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random | ||
| amount of padding on each size, up to the largest image size in the batch. Otherwise, all images are | ||
| padded to the largest image size in the batch. | ||
| """, | ||
| ) | ||
| def preprocess(self, images: ImageInput, **kwargs: Unpack[DonutFastImageProcessorKwargs]) -> BatchFeature: | ||
| if "size" in kwargs: | ||
| size = kwargs.pop("size") | ||
| if isinstance(size, (tuple, list)): | ||
| size = size[::-1] | ||
| kwargs["size"] = size | ||
| return super().preprocess(images, **kwargs) | ||
|
|
||
| def align_long_axis( | ||
| self, | ||
| image: "torch.Tensor", | ||
| size: SizeDict, | ||
| ) -> "torch.Tensor": | ||
| """ | ||
| Align the long axis of the image to the longest axis of the specified size. | ||
|
|
||
| Args: | ||
| image (`torch.Tensor`): | ||
| The image to be aligned. | ||
| size (`Dict[str, int]`): | ||
| The size `{"height": h, "width": w}` to align the long axis to. | ||
|
|
||
| Returns: | ||
| `torch.Tensor`: The aligned image. | ||
| """ | ||
| input_height, input_width = image.shape[-2:] | ||
| output_height, output_width = size.height, size.width | ||
|
|
||
| if (output_width < output_height and input_width > input_height) or ( | ||
| output_width > output_height and input_width < input_height | ||
| ): | ||
| height_dim, width_dim = image.dim() - 2, image.dim() - 1 | ||
| image = torch.rot90(image, 3, dims=[height_dim, width_dim]) | ||
|
|
||
| return image | ||
|
|
||
| def pad_image( | ||
| self, | ||
| image: "torch.Tensor", | ||
| size: SizeDict, | ||
| random_padding: bool = False, | ||
| ) -> "torch.Tensor": | ||
| """ | ||
| Pad the image to the specified size. | ||
|
|
||
| Args: | ||
| image (`torch.Tensor`): | ||
| The image to be padded. | ||
| size (`Dict[str, int]`): | ||
| The size `{"height": h, "width": w}` to pad the image to. | ||
| random_padding (`bool`, *optional*, defaults to `False`): | ||
| Whether to use random padding or not. | ||
| data_format (`str` or `ChannelDimension`, *optional*): | ||
| The data format of the output image. If unset, the same format as the input image is used. | ||
| input_data_format (`ChannelDimension` or `str`, *optional*): | ||
| The channel dimension format of the input image. If not provided, it will be inferred. | ||
| """ | ||
| output_height, output_width = size.height, size.width | ||
| input_height, input_width = image.shape[-2:] | ||
|
|
||
| delta_width = output_width - input_width | ||
| delta_height = output_height - input_height | ||
|
|
||
| if random_padding: | ||
| pad_top = torch.random.randint(low=0, high=delta_height + 1) | ||
| pad_left = torch.random.randint(low=0, high=delta_width + 1) | ||
| else: | ||
| pad_top = delta_height // 2 | ||
| pad_left = delta_width // 2 | ||
|
|
||
| pad_bottom = delta_height - pad_top | ||
| pad_right = delta_width - pad_left | ||
|
|
||
| padding = (pad_left, pad_top, pad_right, pad_bottom) | ||
| return F.pad(image, padding) | ||
|
|
||
| def pad(self, *args, **kwargs): | ||
| logger.info("pad is deprecated and will be removed in version 4.27. Please use pad_image instead.") | ||
| return self.pad_image(*args, **kwargs) | ||
|
|
||
| def thumbnail( | ||
| self, | ||
| image: "torch.Tensor", | ||
| size: SizeDict, | ||
| ) -> "torch.Tensor": | ||
| """ | ||
| Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any | ||
| corresponding dimension of the specified size. | ||
|
|
||
| Args: | ||
| image (`torch.Tensor`): | ||
| The image to be resized. | ||
| size (`Dict[str, int]`): | ||
| The size `{"height": h, "width": w}` to resize the image to. | ||
| resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): | ||
| The resampling filter to use. | ||
| data_format (`Optional[Union[str, ChannelDimension]]`, *optional*): | ||
| The data format of the output image. If unset, the same format as the input image is used. | ||
| input_data_format (`ChannelDimension` or `str`, *optional*): | ||
| The channel dimension format of the input image. If not provided, it will be inferred. | ||
| """ | ||
| input_height, input_width = image.shape[-2:] | ||
| output_height, output_width = size.height, size.width | ||
|
|
||
| # We always resize to the smallest of either the input or output size. | ||
| height = min(input_height, output_height) | ||
| width = min(input_width, output_width) | ||
|
|
||
| if height == input_height and width == input_width: | ||
| return image | ||
|
|
||
| if input_height > input_width: | ||
| width = int(input_width * height / input_height) | ||
| elif input_width > input_height: | ||
| height = int(input_height * width / input_width) | ||
|
|
||
| return self.resize( | ||
| image, | ||
| size=SizeDict(width=width, height=height), | ||
| interpolation=F.InterpolationMode.BICUBIC, | ||
| ) | ||
|
|
||
| def _preprocess( | ||
| self, | ||
| images: list["torch.Tensor"], | ||
| do_resize: bool, | ||
| do_thumbnail: bool, | ||
| do_align_long_axis: bool, | ||
| do_pad: bool, | ||
| size: SizeDict, | ||
| interpolation: Optional["F.InterpolationMode"], | ||
| do_center_crop: bool, | ||
| crop_size: SizeDict, | ||
| do_rescale: bool, | ||
| rescale_factor: float, | ||
| do_normalize: bool, | ||
| image_mean: Optional[Union[float, list[float]]], | ||
| image_std: Optional[Union[float, list[float]]], | ||
| return_tensors: Optional[Union[str, TensorType]], | ||
| **kwargs, | ||
| ) -> BatchFeature: | ||
| # Group images by size for batched resizing | ||
| grouped_images, grouped_images_index = group_images_by_shape(images) | ||
| resized_images_grouped = {} | ||
| for shape, stacked_images in grouped_images.items(): | ||
| if do_align_long_axis: | ||
| stacked_images = self.align_long_axis(image=stacked_images, size=size) | ||
| if do_resize: | ||
| shortest_edge = min(size.height, size.width) | ||
| stacked_images = self.resize( | ||
| image=stacked_images, size=SizeDict(shortest_edge=shortest_edge), interpolation=interpolation | ||
| ) | ||
| if do_thumbnail: | ||
| stacked_images = self.thumbnail(image=stacked_images, size=size) | ||
| if do_pad: | ||
| stacked_images = self.pad_image(image=stacked_images, size=size, random_padding=False) | ||
|
|
||
| resized_images_grouped[shape] = stacked_images | ||
| resized_images = reorder_images(resized_images_grouped, grouped_images_index) | ||
|
|
||
| # Group images by size for further processing | ||
| # Needed in case do_resize is False, or resize returns images with different sizes | ||
| grouped_images, grouped_images_index = group_images_by_shape(resized_images) | ||
| processed_images_grouped = {} | ||
| for shape, stacked_images in grouped_images.items(): | ||
| if do_center_crop: | ||
| stacked_images = self.center_crop(stacked_images, crop_size) | ||
| # Fused rescale and normalize | ||
| stacked_images = self.rescale_and_normalize( | ||
| stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std | ||
| ) | ||
| processed_images_grouped[shape] = stacked_images | ||
|
|
||
| processed_images = reorder_images(processed_images_grouped, grouped_images_index) | ||
| processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images | ||
|
|
||
| return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors) | ||
|
|
||
|
|
||
| __all__ = ["DonutImageProcessorFast"] | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -220,10 +220,17 @@ def align_long_axis( | |
| input_height, input_width = get_image_size(image, channel_dim=input_data_format) | ||
| output_height, output_width = size["height"], size["width"] | ||
|
|
||
| if input_data_format == ChannelDimension.LAST: | ||
| rot_axes = (0, 1) | ||
| elif input_data_format == ChannelDimension.FIRST: | ||
| rot_axes = (1, 2) | ||
| else: | ||
| raise ValueError(f"Unsupported data format: {input_data_format}") | ||
|
|
||
|
Comment on lines
+227
to
+233
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Looks like this broke some tests. input_data_format can be None, so if it is, input_data_format should be inferred before this with:
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Ah I see. Let me fix this part. Hope that it would pass this time |
||
| if (output_width < output_height and input_width > input_height) or ( | ||
| output_width > output_height and input_width < input_height | ||
| ): | ||
| image = np.rot90(image, 3) | ||
| image = np.rot90(image, 3, axes=rot_axes) | ||
|
|
||
| if data_format is not None: | ||
| image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Great, thanks for fixing!