Skip to content
Merged
Show file tree
Hide file tree
Changes from 18 commits
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
b74aa2c
add donut fast image processor support
rootonchair Mar 28, 2025
1930152
run make style
rootonchair Mar 28, 2025
4f3b18b
Update src/transformers/models/donut/image_processing_donut_fast.py
rootonchair Apr 1, 2025
d38bfd0
update test, remove none default values
rootonchair Apr 1, 2025
357bd0e
Merge branch 'donut_fast_image_processor' of github.com:rootonchair/t…
rootonchair Apr 1, 2025
07ee506
add do_align_axis = True test, fix bug in slow image processor
rootonchair Apr 1, 2025
b14edcb
run make style
rootonchair Apr 1, 2025
c58ddb5
remove np usage
rootonchair Apr 1, 2025
22dbfec
make style
rootonchair Apr 1, 2025
fc66a32
Apply suggestions from code review
rootonchair Apr 2, 2025
d91ae7c
Merge branch 'main' into donut_fast_image_processor
yonigozlan Apr 7, 2025
0406e55
Update src/transformers/models/donut/image_processing_donut_fast.py
rootonchair Apr 8, 2025
5443306
add size revert in preprocess
rootonchair Apr 8, 2025
92d2f64
make style
rootonchair Apr 8, 2025
98588ad
fix copies
rootonchair Apr 8, 2025
73c901c
add test for preprocess with kwargs
rootonchair Apr 8, 2025
6aafa0c
make style
rootonchair Apr 8, 2025
f2cfc94
Merge branch 'main' into donut_fast_image_processor
rootonchair Apr 10, 2025
01fc2ff
handle None input_data_format in align_long_axis
rootonchair Apr 11, 2025
93bcc22
Merge branch 'main' into donut_fast_image_processor
rootonchair Apr 11, 2025
dba0096
Merge branch 'donut_fast_image_processor' of github.com:rootonchair/t…
rootonchair Apr 11, 2025
79d9198
Merge branch 'main' into donut_fast_image_processor
yonigozlan Apr 14, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/source/en/model_doc/donut.md
Original file line number Diff line number Diff line change
Expand Up @@ -208,6 +208,11 @@ print(answer)
[[autodoc]] DonutImageProcessor
- preprocess

## DonutImageProcessorFast

[[autodoc]] DonutImageProcessorFast
- preprocess

## DonutFeatureExtractor

[[autodoc]] DonutFeatureExtractor
Expand Down
2 changes: 2 additions & 0 deletions src/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -1359,6 +1359,7 @@
_import_structure["models.deit"].append("DeiTImageProcessorFast")
_import_structure["models.depth_pro"].append("DepthProImageProcessorFast")
_import_structure["models.detr"].append("DetrImageProcessorFast")
_import_structure["models.donut"].append("DonutImageProcessorFast")
_import_structure["models.gemma3"].append("Gemma3ImageProcessorFast")
_import_structure["models.got_ocr2"].append("GotOcr2ImageProcessorFast")
_import_structure["models.llama4"].append("Llama4ImageProcessorFast")
Expand Down Expand Up @@ -6677,6 +6678,7 @@
from .models.deit import DeiTImageProcessorFast
from .models.depth_pro import DepthProImageProcessorFast
from .models.detr import DetrImageProcessorFast
from .models.donut import DonutImageProcessorFast
from .models.gemma3 import Gemma3ImageProcessorFast
from .models.got_ocr2 import GotOcr2ImageProcessorFast
from .models.llama4 import Llama4ImageProcessorFast
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/auto/image_processing_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@
("detr", ("DetrImageProcessor", "DetrImageProcessorFast")),
("dinat", ("ViTImageProcessor", "ViTImageProcessorFast")),
("dinov2", ("BitImageProcessor",)),
("donut-swin", ("DonutImageProcessor",)),
("donut-swin", ("DonutImageProcessor", "DonutImageProcessorFast")),
("dpt", ("DPTImageProcessor",)),
("efficientformer", ("EfficientFormerImageProcessor",)),
("efficientnet", ("EfficientNetImageProcessor",)),
Expand Down
1 change: 1 addition & 0 deletions src/transformers/models/donut/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
from .configuration_donut_swin import *
from .feature_extraction_donut import *
from .image_processing_donut import *
from .image_processing_donut_fast import *
from .modeling_donut_swin import *
from .processing_donut import *
else:
Expand Down
12 changes: 11 additions & 1 deletion src/transformers/models/donut/image_processing_donut.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@

from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
convert_to_rgb,
get_resize_output_image_size,
pad,
resize,
Expand Down Expand Up @@ -150,10 +151,17 @@ def align_long_axis(
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = size["height"], size["width"]

if input_data_format == ChannelDimension.LAST:
rot_axes = (0, 1)
elif input_data_format == ChannelDimension.FIRST:
rot_axes = (1, 2)
else:
raise ValueError(f"Unsupported data format: {input_data_format}")

Comment on lines +159 to +165
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Great, thanks for fixing!

if (output_width < output_height and input_width > input_height) or (
output_width > output_height and input_width < input_height
):
image = np.rot90(image, 3)
image = np.rot90(image, 3, axes=rot_axes)

if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
Expand Down Expand Up @@ -406,6 +414,8 @@ def preprocess(
resample=resample,
)

images = [convert_to_rgb(image) for image in images]

# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]

Expand Down
289 changes: 289 additions & 0 deletions src/transformers/models/donut/image_processing_donut_fast.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,289 @@
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Image processor class for Donut."""

from typing import Optional, Union

from ...image_processing_utils_fast import (
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
BaseImageProcessorFast,
BatchFeature,
DefaultFastImageProcessorKwargs,
)
from ...image_transforms import group_images_by_shape, reorder_images
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ImageInput,
PILImageResampling,
SizeDict,
)
from ...processing_utils import Unpack
from ...utils import (
TensorType,
add_start_docstrings,
is_torch_available,
is_torchvision_available,
is_torchvision_v2_available,
logging,
)


logger = logging.get_logger(__name__)

if is_torch_available():
import torch

if is_torchvision_available():
if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F


class DonutFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
do_thumbnail: Optional[bool]
do_align_long_axis: Optional[bool]
do_pad: Optional[bool]


@add_start_docstrings(
"Constructs a fast Donut image processor.",
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
"""
do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`):
Whether to resize the image using thumbnail method.
do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`):
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random
amount of padding on each size, up to the largest image size in the batch. Otherwise, all images are
padded to the largest image size in the batch.
""",
)
class DonutImageProcessorFast(BaseImageProcessorFast):
resample = PILImageResampling.BILINEAR
image_mean = IMAGENET_STANDARD_MEAN
image_std = IMAGENET_STANDARD_STD
size = {"height": 2560, "width": 1920}
do_resize = True
do_rescale = True
do_normalize = True
do_thumbnail = True
do_align_long_axis = False
do_pad = True
valid_kwargs = DonutFastImageProcessorKwargs

def __init__(self, **kwargs: Unpack[DonutFastImageProcessorKwargs]):
size = kwargs.pop("size", None)
if isinstance(size, (tuple, list)):
size = size[::-1]
kwargs["size"] = size
super().__init__(**kwargs)

@add_start_docstrings(
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
"""
do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`):
Whether to resize the image using thumbnail method.
do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`):
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random
amount of padding on each size, up to the largest image size in the batch. Otherwise, all images are
padded to the largest image size in the batch.
""",
)
def preprocess(self, images: ImageInput, **kwargs: Unpack[DonutFastImageProcessorKwargs]) -> BatchFeature:
if "size" in kwargs:
size = kwargs.pop("size")
if isinstance(size, (tuple, list)):
size = size[::-1]
kwargs["size"] = size
return super().preprocess(images, **kwargs)

def align_long_axis(
self,
image: "torch.Tensor",
size: SizeDict,
) -> "torch.Tensor":
"""
Align the long axis of the image to the longest axis of the specified size.

Args:
image (`torch.Tensor`):
The image to be aligned.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to align the long axis to.

Returns:
`torch.Tensor`: The aligned image.
"""
input_height, input_width = image.shape[-2:]
output_height, output_width = size.height, size.width

if (output_width < output_height and input_width > input_height) or (
output_width > output_height and input_width < input_height
):
height_dim, width_dim = image.dim() - 2, image.dim() - 1
image = torch.rot90(image, 3, dims=[height_dim, width_dim])

return image

def pad_image(
self,
image: "torch.Tensor",
size: SizeDict,
random_padding: bool = False,
) -> "torch.Tensor":
"""
Pad the image to the specified size.

Args:
image (`torch.Tensor`):
The image to be padded.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to pad the image to.
random_padding (`bool`, *optional*, defaults to `False`):
Whether to use random padding or not.
data_format (`str` or `ChannelDimension`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
output_height, output_width = size.height, size.width
input_height, input_width = image.shape[-2:]

delta_width = output_width - input_width
delta_height = output_height - input_height

if random_padding:
pad_top = torch.random.randint(low=0, high=delta_height + 1)
pad_left = torch.random.randint(low=0, high=delta_width + 1)
else:
pad_top = delta_height // 2
pad_left = delta_width // 2

pad_bottom = delta_height - pad_top
pad_right = delta_width - pad_left

padding = (pad_left, pad_top, pad_right, pad_bottom)
return F.pad(image, padding)

def pad(self, *args, **kwargs):
logger.info("pad is deprecated and will be removed in version 4.27. Please use pad_image instead.")
return self.pad_image(*args, **kwargs)

def thumbnail(
self,
image: "torch.Tensor",
size: SizeDict,
) -> "torch.Tensor":
"""
Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any
corresponding dimension of the specified size.

Args:
image (`torch.Tensor`):
The image to be resized.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to resize the image to.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
The resampling filter to use.
data_format (`Optional[Union[str, ChannelDimension]]`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
input_height, input_width = image.shape[-2:]
output_height, output_width = size.height, size.width

# We always resize to the smallest of either the input or output size.
height = min(input_height, output_height)
width = min(input_width, output_width)

if height == input_height and width == input_width:
return image

if input_height > input_width:
width = int(input_width * height / input_height)
elif input_width > input_height:
height = int(input_height * width / input_width)

return self.resize(
image,
size=SizeDict(width=width, height=height),
interpolation=F.InterpolationMode.BICUBIC,
)

def _preprocess(
self,
images: list["torch.Tensor"],
do_resize: bool,
do_thumbnail: bool,
do_align_long_axis: bool,
do_pad: bool,
size: SizeDict,
interpolation: Optional["F.InterpolationMode"],
do_center_crop: bool,
crop_size: SizeDict,
do_rescale: bool,
rescale_factor: float,
do_normalize: bool,
image_mean: Optional[Union[float, list[float]]],
image_std: Optional[Union[float, list[float]]],
return_tensors: Optional[Union[str, TensorType]],
**kwargs,
) -> BatchFeature:
# Group images by size for batched resizing
grouped_images, grouped_images_index = group_images_by_shape(images)
resized_images_grouped = {}
for shape, stacked_images in grouped_images.items():
if do_align_long_axis:
stacked_images = self.align_long_axis(image=stacked_images, size=size)
if do_resize:
shortest_edge = min(size.height, size.width)
stacked_images = self.resize(
image=stacked_images, size=SizeDict(shortest_edge=shortest_edge), interpolation=interpolation
)
if do_thumbnail:
stacked_images = self.thumbnail(image=stacked_images, size=size)
if do_pad:
stacked_images = self.pad_image(image=stacked_images, size=size, random_padding=False)

resized_images_grouped[shape] = stacked_images
resized_images = reorder_images(resized_images_grouped, grouped_images_index)

# Group images by size for further processing
# Needed in case do_resize is False, or resize returns images with different sizes
grouped_images, grouped_images_index = group_images_by_shape(resized_images)
processed_images_grouped = {}
for shape, stacked_images in grouped_images.items():
if do_center_crop:
stacked_images = self.center_crop(stacked_images, crop_size)
# Fused rescale and normalize
stacked_images = self.rescale_and_normalize(
stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std
)
processed_images_grouped[shape] = stacked_images

processed_images = reorder_images(processed_images_grouped, grouped_images_index)
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images

return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors)


__all__ = ["DonutImageProcessorFast"]
9 changes: 8 additions & 1 deletion src/transformers/models/nougat/image_processing_nougat.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,10 +220,17 @@ def align_long_axis(
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = size["height"], size["width"]

if input_data_format == ChannelDimension.LAST:
rot_axes = (0, 1)
elif input_data_format == ChannelDimension.FIRST:
rot_axes = (1, 2)
else:
raise ValueError(f"Unsupported data format: {input_data_format}")

Comment on lines +227 to +233
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks like this broke some tests. input_data_format can be None, so if it is, input_data_format should be inferred before this with: input_data_format = infer_channel_dimension_format(images[0]) (it's done after now).
Same for donut in the slow processor.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ah I see. Let me fix this part. Hope that it would pass this time

if (output_width < output_height and input_width > input_height) or (
output_width > output_height and input_width < input_height
):
image = np.rot90(image, 3)
image = np.rot90(image, 3, axes=rot_axes)

if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
Expand Down
Loading