Skip to content

[IR] Handle ONNX custom types in DataType.from_numpy #2131

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 25, 2025

Conversation

justinchuby
Copy link
Collaborator

Fixes #1893 where the IR was confused about ONNX custom types. In the long run we should update onnx to use ml_dtypes.

Copy link
Contributor

@Copilot Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pull Request Overview

This PR adds support for handling ONNX custom types in DataType.from_numpy to resolve confusion with custom dtypes. It also expands test coverage by introducing parameterized tests for both standard and custom numpy dtypes.

Reviewed Changes

Copilot reviewed 2 out of 2 changed files in this pull request and generated no comments.

File Description
onnxscript/ir/_enums.py Adds special case handling for custom ONNX dtypes based on dtype.names
onnxscript/ir/_enums_test.py Introduces parameterized tests to cover new custom and standard types

@justinchuby justinchuby enabled auto-merge (squash) March 25, 2025 00:59
@justinchuby justinchuby added the module: IR Intermediate representation label Mar 25, 2025
Copy link

codecov bot commented Mar 25, 2025

❌ 7 Tests Failed:

Tests completed Failed Passed Skipped
13898 7 13891 1901
View the top 3 failed test(s) by shortest run time
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0040_test_argmax_keepdims_example
Stack Traces | 0.004s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_argmax_keepdims_example'

The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_argmax_keepdims_example' (e=No module named 'tests.onnx_backend_test_code.test_argmax_keepdims_example') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_argmax_keepdims_example.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_argmax_keepdims_example.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import FLOAT, INT64
E   from onnxscript.onnx_opset import opset13
E   
E   @script()
E   def bck_test_argmax_keepdims_example(data: FLOAT[2,2]) -> (INT64[2,1]):
E       result = opset13.ArgMax(data, axis=1, keepdims=1)
E       return result
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0525_test_layer_normalization_4d_axis0
Stack Traces | 0.004s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_layer_normalization_4d_axis0'

The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_layer_normalization_4d_axis0' (e=No module named 'tests.onnx_backend_test_code.test_layer_normalization_4d_axis0') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_layer_normalization_4d_axis0.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_layer_normalization_4d_axis0.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import FLOAT
E   from onnxscript.onnx_opset import opset17
E   
E   @script()
E   def bck_test_layer_normalization_4d_axis0(X: FLOAT[2,3,4,5], W: FLOAT[2,3,4,5], B: FLOAT[2,3,4,5]) -> (FLOAT[2,3,4,5], FLOAT[1,1,1,1], FLOAT[1,1,1,1]):
E       Y, Mean, InvStdDev = opset17.LayerNormalization(X, W, B, axis=0)
E       return Y, Mean, InvStdDev
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_1003_test_scatter_elements_with_duplicate_indices
Stack Traces | 0.004s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_scatter_elements_with_duplicate_indices'

The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_scatter_elements_with_duplicate_indices' (e=No module named 'tests.onnx_backend_test_code.test_scatter_elements_with_duplicate_indices') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_scatter_elements_with_duplicate_indices.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_scatter_elements_with_duplicate_indices.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import FLOAT, INT64
E   from onnxscript.onnx_opset import opset18
E   
E   @script()
E   def bck_test_scatter_elements_with_duplicate_indices(data: FLOAT[1,5], indices: INT64[1,2], updates: FLOAT[1,2]) -> (FLOAT[1,5]):
E       y = opset18.ScatterElements(data, indices, updates, axis=1, reduction='add')
E       return y

To view more test analytics, go to the Test Analytics Dashboard
📋 Got 3 mins? Take this short survey to help us improve Test Analytics.

@justinchuby justinchuby requested a review from Copilot March 25, 2025 16:19
Copy link
Contributor

@Copilot Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pull Request Overview

This PR updates the DataType.from_numpy function to correctly handle ONNX custom types by mapping custom numpy dtypes to the corresponding ONNX data types. Key changes include:

  • Adding support for special cases (custom dtypes) based on the dtype’s "names" attribute.
  • Updating the tests to use parameterized cases including both standard numpy types and ONNX custom types.
  • Adding necessary imports (ml_dtypes, onnx._custom_element_types, parameterized) to support the new test cases.

Reviewed Changes

Copilot reviewed 2 out of 2 changed files in this pull request and generated no comments.

File Description
onnxscript/ir/_enums.py Updated from_numpy to support custom ONNX dtypes using dtype.names
onnxscript/ir/_enums_test.py Refactored tests to use parameterized inputs for broader coverage
Comments suppressed due to low confidence (1)

onnxscript/ir/_enums_test.py:109

  • [nitpick] Consider renaming the '_' parameter to a more descriptive name such as 'test_name' to improve readability in the test signature.
def test_from_numpy_takes_np_dtype_and_returns_data_type(self, _: str, np_dtype: np.dtype, onnx_type: _enums.DataType):

@justinchuby justinchuby merged commit b26817c into main Mar 25, 2025
25 of 29 checks passed
@justinchuby justinchuby deleted the justinchu/handle-custom-types branch March 25, 2025 16:39
bmehta001 pushed a commit to bmehta001/onnxscript that referenced this pull request Apr 11, 2025
Fixes microsoft#1893 where the IR
was confused about ONNX custom types. In the long run we should update
onnx to use ml_dtypes.
bmehta001 pushed a commit to bmehta001/onnxscript that referenced this pull request Apr 11, 2025
Fixes microsoft#1893 where the IR
was confused about ONNX custom types. In the long run we should update
onnx to use ml_dtypes.
bmehta001 pushed a commit to bmehta001/onnxscript that referenced this pull request Apr 11, 2025
Fixes microsoft#1893 where the IR
was confused about ONNX custom types. In the long run we should update
onnx to use ml_dtypes.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
module: IR Intermediate representation
Projects
Development

Successfully merging this pull request may close these issues.

Optimizer fails for bfloat16 models
2 participants