Skip to content

REF: split describe categorical function #39287

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jan 20, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
153 changes: 82 additions & 71 deletions pandas/core/describe.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from __future__ import annotations

from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, List, Optional, Sequence, Union, cast
from typing import TYPE_CHECKING, Callable, List, Optional, Sequence, Union, cast
import warnings

import numpy as np
Expand Down Expand Up @@ -113,12 +113,11 @@ class SeriesDescriber(NDFrameDescriberAbstract):
obj: "Series"

def describe(self, percentiles: Sequence[float]) -> Series:
return describe_1d(
describe_func = select_describe_func(
self.obj,
percentiles=percentiles,
datetime_is_numeric=self.datetime_is_numeric,
is_series=True,
self.datetime_is_numeric,
)
return describe_func(self.obj, percentiles)


class DataFrameDescriber(NDFrameDescriberAbstract):
Expand Down Expand Up @@ -155,15 +154,10 @@ def __init__(
def describe(self, percentiles: Sequence[float]) -> DataFrame:
data = self._select_data()

ldesc = [
describe_1d(
series,
percentiles=percentiles,
datetime_is_numeric=self.datetime_is_numeric,
is_series=False,
)
for _, series in data.items()
]
ldesc: List["Series"] = []
for _, series in data.items():
describe_func = select_describe_func(series, self.datetime_is_numeric)
ldesc.append(describe_func(series, percentiles))

col_names = reorder_columns(ldesc)
d = concat(
Expand Down Expand Up @@ -231,55 +225,73 @@ def describe_numeric_1d(series: "Series", percentiles: Sequence[float]) -> Serie
return Series(d, index=stat_index, name=series.name)


def describe_categorical_1d(data: "Series", is_series: bool) -> Series:
def describe_categorical_1d(
data: "Series",
percentiles_ignored: Sequence[float],
) -> Series:
"""Describe series containing categorical data.

Parameters
----------
data : Series
Series to be described.
is_series : bool
True if the original object is a Series.
False if the one column of the DataFrame is described.
percentiles_ignored : list-like of numbers
Ignored, but in place to unify interface.
"""
names = ["count", "unique", "top", "freq"]
objcounts = data.value_counts()
count_unique = len(objcounts[objcounts != 0])
if count_unique > 0:
top, freq = objcounts.index[0], objcounts.iloc[0]
dtype = None
else:
# If the DataFrame is empty, set 'top' and 'freq' to None
# to maintain output shape consistency
top, freq = np.nan, np.nan
dtype = "object"

result = [data.count(), count_unique, top, freq]

from pandas import Series

return Series(result, index=names, name=data.name, dtype=dtype)


def describe_timestamp_as_categorical_1d(
data: "Series",
percentiles_ignored: Sequence[float],
) -> Series:
"""Describe series containing timestamp data treated as categorical.

Parameters
----------
data : Series
Series to be described.
percentiles_ignored : list-like of numbers
Ignored, but in place to unify interface.
"""
names = ["count", "unique"]
objcounts = data.value_counts()
count_unique = len(objcounts[objcounts != 0])
result = [data.count(), count_unique]
dtype = None
if result[1] > 0:
if count_unique > 0:
top, freq = objcounts.index[0], objcounts.iloc[0]
if is_datetime64_any_dtype(data.dtype):
if is_series:
stacklevel = 6
else:
stacklevel = 7
warnings.warn(
"Treating datetime data as categorical rather than numeric in "
"`.describe` is deprecated and will be removed in a future "
"version of pandas. Specify `datetime_is_numeric=True` to "
"silence this warning and adopt the future behavior now.",
FutureWarning,
stacklevel=stacklevel,
)
tz = data.dt.tz
asint = data.dropna().values.view("i8")
top = Timestamp(top)
if top.tzinfo is not None and tz is not None:
# Don't tz_localize(None) if key is already tz-aware
top = top.tz_convert(tz)
else:
top = top.tz_localize(tz)
names += ["top", "freq", "first", "last"]
result += [
top,
freq,
Timestamp(asint.min(), tz=tz),
Timestamp(asint.max(), tz=tz),
]
tz = data.dt.tz
asint = data.dropna().values.view("i8")
top = Timestamp(top)
if top.tzinfo is not None and tz is not None:
# Don't tz_localize(None) if key is already tz-aware
top = top.tz_convert(tz)
else:
names += ["top", "freq"]
result += [top, freq]
top = top.tz_localize(tz)
names += ["top", "freq", "first", "last"]
result += [
top,
freq,
Timestamp(asint.min(), tz=tz),
Timestamp(asint.max(), tz=tz),
]

# If the DataFrame is empty, set 'top' and 'freq' to None
# to maintain output shape consistency
Expand Down Expand Up @@ -317,41 +329,40 @@ def describe_timestamp_1d(data: "Series", percentiles: Sequence[float]) -> Serie
return Series(d, index=stat_index, name=data.name)


def describe_1d(
def select_describe_func(
data: "Series",
percentiles: Sequence[float],
datetime_is_numeric: bool,
*,
is_series: bool,
) -> Series:
"""Describe series.
) -> Callable:
"""Select proper function for describing series based on data type.

Parameters
----------
data : Series
Series to be described.
percentiles : list-like of numbers
The percentiles to include in the output.
datetime_is_numeric : bool, default False
datetime_is_numeric : bool
Whether to treat datetime dtypes as numeric.
is_series : bool
True if the original object is a Series.
False if the one column of the DataFrame is described.

Returns
-------
Series
"""
if is_bool_dtype(data.dtype):
return describe_categorical_1d(data, is_series)
return describe_categorical_1d
elif is_numeric_dtype(data):
return describe_numeric_1d(data, percentiles)
elif is_datetime64_any_dtype(data.dtype) and datetime_is_numeric:
return describe_timestamp_1d(data, percentiles)
return describe_numeric_1d
elif is_datetime64_any_dtype(data.dtype):
if datetime_is_numeric:
return describe_timestamp_1d
else:
warnings.warn(
"Treating datetime data as categorical rather than numeric in "
"`.describe` is deprecated and will be removed in a future "
"version of pandas. Specify `datetime_is_numeric=True` to "
"silence this warning and adopt the future behavior now.",
FutureWarning,
stacklevel=5,
)
return describe_timestamp_as_categorical_1d
elif is_timedelta64_dtype(data.dtype):
return describe_numeric_1d(data, percentiles)
return describe_numeric_1d
else:
return describe_categorical_1d(data, is_series)
return describe_categorical_1d


def refine_percentiles(percentiles: Optional[Sequence[float]]) -> Sequence[float]:
Expand Down