Skip to content

Add ExGaussian moment #5165

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 11 commits into from
Nov 11, 2021
11 changes: 7 additions & 4 deletions pymc/distributions/continuous.py
Original file line number Diff line number Diff line change
Expand Up @@ -2779,15 +2779,18 @@ def dist(cls, mu=0.0, sigma=None, nu=None, sd=None, *args, **kwargs):
sigma = at.as_tensor_variable(floatX(sigma))
nu = at.as_tensor_variable(floatX(nu))

# sd = sigma
# mean = mu + nu
# variance = (sigma ** 2) + (nu ** 2)

assert_negative_support(sigma, "sigma", "ExGaussian")
assert_negative_support(nu, "nu", "ExGaussian")

return super().dist([mu, sigma, nu], *args, **kwargs)

def get_moment(rv, size, mu, sigma, nu):
mu, nu, _ = at.broadcast_arrays(mu, nu, sigma)
moment = mu + nu
if not rv_size_is_none(size):
moment = at.full(size, moment)
return moment

def logp(value, mu, sigma, nu):
"""
Calculate log-probability of ExGaussian distribution at specified value.
Expand Down
17 changes: 17 additions & 0 deletions pymc/tests/test_distributions_moments.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
ChiSquared,
Constant,
DiscreteUniform,
ExGaussian,
Exponential,
Flat,
Gamma,
Expand Down Expand Up @@ -541,6 +542,22 @@ def test_logistic_moment(mu, s, size, expected):
assert_moment_is_expected(model, expected)


@pytest.mark.parametrize(
"mu, nu, sigma, size, expected",
[
(1, 1, None, None, 2),
(1, 1, np.ones((2, 5)), None, np.full([2, 5], 2)),
(1, 1, None, 5, np.full(5, 2)),
(1, np.arange(1, 6), None, None, np.arange(2, 7)),
(1, np.arange(1, 6), None, (2, 5), np.full((2, 5), np.arange(2, 7))),
],
)
def test_exgaussian_moment(mu, nu, sigma, size, expected):
with Model() as model:
ExGaussian("x", mu=mu, sigma=sigma, nu=nu, size=size)
assert_moment_is_expected(model, expected)


@pytest.mark.parametrize(
"p, size, expected",
[
Expand Down