Skip to content

port RandomPhotoMetricDistort to prototype transforms #5663

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 31, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion torchvision/prototype/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

from ._augment import RandomErasing, RandomMixup, RandomCutmix
from ._auto_augment import RandAugment, TrivialAugmentWide, AutoAugment, AugMix
from ._color import ColorJitter
from ._color import ColorJitter, RandomPhotometricDistort
from ._container import Compose, RandomApply, RandomChoice, RandomOrder
from ._geometry import (
Resize,
Expand Down
68 changes: 67 additions & 1 deletion torchvision/prototype/transforms/_color.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,9 @@
import torch
from torchvision.prototype import features
from torchvision.prototype.transforms import Transform, functional as F
from torchvision.transforms import functional as _F

from ._utils import is_simple_tensor
from ._utils import is_simple_tensor, get_image_dimensions, query_image

T = TypeVar("T", features.Image, torch.Tensor, PIL.Image.Image)

Expand Down Expand Up @@ -120,5 +121,70 @@ def _transform(self, input: Any, params: Dict[str, Any]) -> Any:

for transform in params["image_transforms"]:
input = transform(input)
return input


class _RandomChannelShuffle(Transform):
def _get_params(self, sample: Any) -> Dict[str, Any]:
image = query_image(sample)
num_channels, _, _ = get_image_dimensions(image)
return dict(permutation=torch.randperm(num_channels))

def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if not (isinstance(input, (features.Image, PIL.Image.Image)) or is_simple_tensor(input)):
return input

image = input
if isinstance(input, PIL.Image.Image):
image = _F.pil_to_tensor(image)

output = image[..., params["permutation"], :, :]

if isinstance(input, features.Image):
output = features.Image.new_like(input, output, color_space=features.ColorSpace.OTHER)
elif isinstance(input, PIL.Image.Image):
output = _F.to_pil_image(output)

return output


class RandomPhotometricDistort(Transform):
def __init__(
self,
contrast: Tuple[float, float] = (0.5, 1.5),
saturation: Tuple[float, float] = (0.5, 1.5),
hue: Tuple[float, float] = (-0.05, 0.05),
brightness: Tuple[float, float] = (0.875, 1.125),
p: float = 0.5,
):
super().__init__()
self._brightness = ColorJitter(brightness=brightness)
self._contrast = ColorJitter(contrast=contrast)
self._hue = ColorJitter(hue=hue)
self._saturation = ColorJitter(saturation=saturation)
self._channel_shuffle = _RandomChannelShuffle()
self.p = p

def _get_params(self, sample: Any) -> Dict[str, Any]:
return dict(
zip(
["brightness", "contrast1", "saturation", "hue", "contrast2", "channel_shuffle"],
torch.rand(6) < self.p,
),
contrast_before=torch.rand(()) < 0.5,
)

def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if params["brightness"]:
input = self._brightness(input)
if params["contrast1"] and params["contrast_before"]:
input = self._contrast(input)
if params["saturation"]:
input = self._saturation(input)
if params["saturation"]:
input = self._saturation(input)
if params["contrast2"] and not params["contrast_before"]:
input = self._contrast(input)
if params["channel_shuffle"]:
input = self._channel_shuffle(input)
return input