-
Notifications
You must be signed in to change notification settings - Fork 614
add resampler kernel #662
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
add resampler kernel #662
Changes from all commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
86dfc92
add resampler kernel
e23ad63
add register op
18e4d9e
namespace and register
7bc3fdb
python format
4ed504f
headers and cleanup
08c1ea1
sanity cleanup
fa6993a
readme update
ac9e706
alphabetic order
439168f
gpu test & minor revision
fdd9a4b
comment on wrapping part
b67cd1f
cpu test
08900c1
miscellaneous fixing
6755b7b
minior fix
7c3e788
line removal
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
417 changes: 417 additions & 0 deletions
417
tensorflow_addons/custom_ops/image/cc/kernels/resampler_ops.cc
Large diffs are not rendered by default.
Oops, something went wrong.
53 changes: 53 additions & 0 deletions
53
tensorflow_addons/custom_ops/image/cc/kernels/resampler_ops.h
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
// Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
// ============================================================================= | ||
|
||
#ifndef TENSORFLOW_ADDONS_IMAGE_KERNELS_RESAMPLER_OPS_H_ | ||
#define TENSORFLOW_ADDONS_IMAGE_KERNELS_RESAMPLER_OPS_H_ | ||
|
||
#if PLATFORM_WINDOWS | ||
#define __restrict__ __restrict | ||
#endif | ||
|
||
#include "tensorflow/core/framework/op_kernel.h" | ||
|
||
namespace tensorflow { | ||
namespace addons { | ||
namespace functor { | ||
|
||
// Helper functor for the Resampler Op in 2D | ||
template <typename Device, typename T> | ||
struct Resampler2DFunctor { | ||
void operator()(OpKernelContext* ctx, const Device& d, | ||
const T* __restrict__ data, const T* __restrict__ warp, | ||
T* __restrict__ output, const int batch_size, | ||
const int data_height, const int data_width, | ||
const int data_channels, const int num_sampling_points); | ||
}; | ||
|
||
// Helper functor for the Resampler Gradient Op in 2D | ||
template <typename Device, typename T> | ||
struct ResamplerGrad2DFunctor { | ||
void operator()(OpKernelContext* ctx, const Device& d, | ||
const T* __restrict__ data, const T* __restrict__ warp, | ||
const T* __restrict__ grad_output, T* __restrict__ grad_data, | ||
T* __restrict__ grad_warp, const int batch_size, | ||
const int data_height, const int data_width, | ||
const int data_channels, const int num_sampling_points); | ||
}; | ||
|
||
} // namespace functor | ||
} // namespace addons | ||
} // namespace tensorflow | ||
#endif // TENSORFLOW_ADDONS_IMAGE_KERNELS_RESAMPLER_OPS_H_ |
281 changes: 281 additions & 0 deletions
281
tensorflow_addons/custom_ops/image/cc/kernels/resampler_ops_gpu.cu.cc
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,281 @@ | ||
// Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
// ============================================================================= | ||
|
||
#if GOOGLE_CUDA | ||
|
||
#define EIGEN_USE_GPU | ||
|
||
#include <stdio.h> | ||
|
||
#include <cmath> | ||
|
||
#include "tensorflow/core/framework/register_types.h" | ||
#include "tensorflow/core/util/gpu_kernel_helper.h" | ||
#include "tensorflow_addons/custom_ops/image/cc/kernels/resampler_ops.h" | ||
|
||
namespace tensorflow { | ||
namespace addons { | ||
|
||
using GPUDevice = Eigen::GpuDevice; | ||
|
||
namespace { | ||
|
||
#define GET_DATA_POINT(x, y) \ | ||
data[batch_id * data_batch_stride + data_channels * (y * data_width + x) + \ | ||
chan] | ||
|
||
template <typename T> | ||
__global__ void Resampler2DKernel(const T* __restrict__ data, | ||
const T* __restrict__ warp, | ||
T* __restrict__ output, const int batch_size, | ||
const int data_height, const int data_width, | ||
const int data_channels, | ||
const int num_sampling_points) { | ||
const int output_data_size = batch_size * num_sampling_points * data_channels; | ||
CUDA_1D_KERNEL_LOOP(index, output_data_size) { | ||
const int out_index = index; | ||
|
||
// Get (idxSample, channel, point) from the index. | ||
// Use this formula | ||
// index = batch_id * num_sampling_points * num_chans + | ||
// sample_id * num_chans + chan_id, | ||
// with sample_id = [0, ... ,num_sampling_points) | ||
const int data_batch_stride = data_height * data_width * data_channels; | ||
const int warp_batch_stride = num_sampling_points * 2; | ||
const int output_batch_stride = num_sampling_points * data_channels; | ||
|
||
const int batch_id = index / output_batch_stride; | ||
const int index_in_batch = index % output_batch_stride; | ||
const int chan = index_in_batch % data_channels; | ||
const int sample_id = index_in_batch / data_channels; | ||
|
||
// Get coords of 2D point where data will be resampled | ||
const T x = warp[batch_id * warp_batch_stride + sample_id * 2]; | ||
const T y = warp[batch_id * warp_batch_stride + sample_id * 2 + 1]; | ||
const T zero = static_cast<T>(0.0); | ||
const T one = static_cast<T>(1.0); | ||
// The interpolation function: | ||
// a) implicitly pads the input data with 0s (hence the unusual checks | ||
// with {x,y} > -1) | ||
// b) returns 0 when sampling outside the (padded) image. | ||
// The effect is that the sampled signal smoothly goes to 0 outside | ||
// the original input domain, rather than presenting a jump | ||
// discontinuity at the image boundaries. | ||
if (x > static_cast<T>(-1.0) && y > static_cast<T>(-1.0) && | ||
x < static_cast<T>(data_width) && y < static_cast<T>(data_height)) { | ||
// Precompute floor (f) and ceil (c) values for x and y. | ||
const int fx = std::floor(static_cast<float>(x)); | ||
const int fy = std::floor(static_cast<float>(y)); | ||
const int cx = fx + 1; | ||
const int cy = fy + 1; | ||
const T dx = static_cast<T>(cx) - x; | ||
const T dy = static_cast<T>(cy) - y; | ||
|
||
const T img_fxfy = | ||
(fx >= 0 && fy >= 0) ? dx * dy * GET_DATA_POINT(fx, fy) : zero; | ||
|
||
const T img_cxcy = (cx <= data_width - 1 && cy <= data_height - 1) | ||
? (one - dx) * (one - dy) * GET_DATA_POINT(cx, cy) | ||
: zero; | ||
|
||
const T img_fxcy = (fx >= 0 && cy <= data_height - 1) | ||
? dx * (one - dy) * GET_DATA_POINT(fx, cy) | ||
: zero; | ||
|
||
const T img_cxfy = (cx <= data_width - 1 && fy >= 0) | ||
? (one - dx) * dy * GET_DATA_POINT(cx, fy) | ||
: zero; | ||
|
||
output[out_index] = img_fxfy + img_cxcy + img_fxcy + img_cxfy; | ||
} else { | ||
output[out_index] = zero; | ||
} | ||
} | ||
} | ||
|
||
} // namespace | ||
|
||
namespace functor { | ||
|
||
template <typename T> | ||
struct Resampler2DFunctor<GPUDevice, T> { | ||
void operator()(OpKernelContext* ctx, const GPUDevice& d, | ||
const T* __restrict__ data, const T* __restrict__ warp, | ||
T* __restrict__ output, const int batch_size, | ||
const int data_height, const int data_width, | ||
const int data_channels, const int num_sampling_points) { | ||
const int output_data_size = | ||
batch_size * num_sampling_points * data_channels; | ||
GpuLaunchConfig config = GetGpuLaunchConfig(output_data_size, d); | ||
TF_CHECK_OK(GpuLaunchKernel( | ||
Resampler2DKernel<T>, config.block_count, config.thread_per_block, 0, | ||
d.stream(), data, warp, output, batch_size, data_height, data_width, | ||
data_channels, num_sampling_points)); | ||
} | ||
}; | ||
|
||
// TODO(fviola): gcudacc fails at compile time with Eigen::half. | ||
// template struct Resampler2DFunctor<GPUDevice, Eigen::half>; | ||
template struct Resampler2DFunctor<GPUDevice, float>; | ||
template struct Resampler2DFunctor<GPUDevice, double>; | ||
|
||
} // namespace functor | ||
|
||
namespace { | ||
|
||
#define UPDATE_GRAD_DATA_POINT(x, y, v) \ | ||
atomicAdd(grad_data + (batch_id * data_batch_stride + \ | ||
data_channels * (y * data_width + x) + chan), \ | ||
v) | ||
|
||
template <typename T> | ||
__global__ void ResamplerGrad2DKernel( | ||
const T* __restrict__ data, const T* __restrict__ warp, | ||
const T* __restrict__ grad_output, T* __restrict__ grad_data, | ||
T* __restrict__ grad_warp, const int batch_size, const int data_height, | ||
const int data_width, const int data_channels, | ||
const int num_sampling_points) { | ||
const int resampler_output_size = | ||
batch_size * num_sampling_points * data_channels; | ||
CUDA_1D_KERNEL_LOOP(index, resampler_output_size) { | ||
const int out_index = index; | ||
|
||
// Get (idxSample, channel, point) from the index. | ||
// Use this formula | ||
// index = batch_id * num_sampling_points * num_chans + | ||
// sample_id * num_chans + chan_id, | ||
// with sample_id = [0, ... ,num_sampling_points) | ||
const int data_batch_stride = data_height * data_width * data_channels; | ||
const int warp_batch_stride = num_sampling_points * 2; | ||
const int output_batch_stride = num_sampling_points * data_channels; | ||
|
||
const int batch_id = index / output_batch_stride; | ||
const int index_in_batch = index % output_batch_stride; | ||
const int chan = index_in_batch % data_channels; | ||
const int sample_id = index_in_batch / data_channels; | ||
|
||
// Get coords of 2D point where data will be resampled | ||
const int warp_id_x = batch_id * warp_batch_stride + sample_id * 2; | ||
const int warp_id_y = warp_id_x + 1; | ||
const T x = warp[warp_id_x]; | ||
const T y = warp[warp_id_y]; | ||
const T zero = static_cast<T>(0.0); | ||
const T one = static_cast<T>(1.0); | ||
|
||
// Get grad output | ||
const T grad_output_value = grad_output[out_index]; | ||
// The interpolation function whose gradient this kernel implements: | ||
// a) implicitly pads the input data with 0s (hence the unusual checks | ||
// with {x,y} > -1) | ||
// b) returns 0 when sampling outside the (padded) image. | ||
// The effect is that the sampled signal smoothly goes to 0 outside | ||
// the original input domain, rather than presenting a jump | ||
// discontinuity at the image boundaries. | ||
if (x > static_cast<T>(-1.0) && y > static_cast<T>(-1.0) && | ||
x < static_cast<T>(data_width) && y < static_cast<T>(data_height)) { | ||
// Precompute floor (f) and ceil (c) values for x and y. | ||
const int fx = std::floor(static_cast<float>(x)); | ||
const int fy = std::floor(static_cast<float>(y)); | ||
const int cx = fx + 1; | ||
const int cy = fy + 1; | ||
const T dx = static_cast<T>(cx) - x; | ||
const T dy = static_cast<T>(cy) - y; | ||
|
||
const T img_fxfy = (fx >= 0 && fy >= 0) ? GET_DATA_POINT(fx, fy) : zero; | ||
|
||
const T img_cxcy = (cx <= data_width - 1 && cy <= data_height - 1) | ||
? GET_DATA_POINT(cx, cy) | ||
: zero; | ||
|
||
const T img_fxcy = | ||
(fx >= 0 && cy <= data_height - 1) ? GET_DATA_POINT(fx, cy) : zero; | ||
|
||
const T img_cxfy = | ||
(cx <= data_width - 1 && fy >= 0) ? GET_DATA_POINT(cx, fy) : zero; | ||
|
||
// Update partial gradients wrt relevant warp field entries | ||
atomicAdd(grad_warp + warp_id_x, | ||
grad_output_value * ((one - dy) * (img_cxcy - img_fxcy) + | ||
dy * (img_cxfy - img_fxfy))); | ||
atomicAdd(grad_warp + warp_id_y, | ||
grad_output_value * ((one - dx) * (img_cxcy - img_cxfy) + | ||
dx * (img_fxcy - img_fxfy))); | ||
|
||
// Update partial gradients wrt sampled data | ||
if (fx >= 0 && fy >= 0) { | ||
UPDATE_GRAD_DATA_POINT(fx, fy, grad_output_value * dx * dy); | ||
} | ||
if (cx <= data_width - 1 && cy <= data_height - 1) { | ||
UPDATE_GRAD_DATA_POINT(cx, cy, | ||
grad_output_value * (one - dx) * (one - dy)); | ||
} | ||
if (fx >= 0 && cy <= data_height - 1) { | ||
UPDATE_GRAD_DATA_POINT(fx, cy, grad_output_value * dx * (one - dy)); | ||
} | ||
if (cx <= data_width - 1 && fy >= 0) { | ||
UPDATE_GRAD_DATA_POINT(cx, fy, grad_output_value * (one - dx) * dy); | ||
} | ||
} | ||
} | ||
} | ||
|
||
#undef GET_DATA_POINT | ||
#undef UPDATE_GRAD_DATA_POINT | ||
|
||
} // namespace | ||
|
||
namespace functor { | ||
|
||
template <typename T> | ||
struct ResamplerGrad2DFunctor<GPUDevice, T> { | ||
void operator()(OpKernelContext* ctx, const GPUDevice& d, | ||
const T* __restrict__ data, const T* __restrict__ warp, | ||
const T* __restrict__ grad_output, T* __restrict__ grad_data, | ||
T* __restrict__ grad_warp, const int batch_size, | ||
const int data_height, const int data_width, | ||
const int data_channels, const int num_sampling_points) { | ||
// Set gradients to 0, because the kernel incrementally updates the | ||
// tensor entries by adding partial contributions. | ||
const int grad_warp_size = batch_size * num_sampling_points * 2; | ||
const int grad_data_size = | ||
batch_size * data_height * data_width * data_channels; | ||
|
||
GpuLaunchConfig config = GetGpuLaunchConfig(grad_warp_size, d); | ||
TF_CHECK_OK(GpuLaunchKernel(SetZero<T>, config.block_count, | ||
config.thread_per_block, 0, d.stream(), | ||
grad_warp_size, grad_warp)); | ||
|
||
config = GetGpuLaunchConfig(grad_data_size, d); | ||
TF_CHECK_OK(GpuLaunchKernel(SetZero<T>, config.block_count, | ||
config.thread_per_block, 0, d.stream(), | ||
grad_data_size, grad_data)); | ||
|
||
const int resampler_output_size = | ||
batch_size * num_sampling_points * data_channels; | ||
config = GetGpuLaunchConfig(resampler_output_size, d); | ||
TF_CHECK_OK(GpuLaunchKernel(ResamplerGrad2DKernel<T>, config.block_count, | ||
config.thread_per_block, 0, d.stream(), data, | ||
warp, grad_output, grad_data, grad_warp, | ||
batch_size, data_height, data_width, | ||
data_channels, num_sampling_points)); | ||
} | ||
}; | ||
|
||
template struct ResamplerGrad2DFunctor<GPUDevice, float>; | ||
|
||
} // namespace functor | ||
} // namespace addons | ||
} // namespace tensorflow | ||
#endif // GOOGLE_CUDA |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.